Studies on Facilities for
Persistent Programming Languages

and Their Implementations

Masayoshi Aritsugi

Department of Computer Science and Communication Engineering

Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-81 Japan
A Dissertation Submitted to the Division of Engineering
in Partial Fulfillment of the Requirements for the Degree of Doctor of Engineering

in Computer Science and Communication Engineering

Copyright (©) December 1995 by Masayoshi Aritsugi

Contents

Abstract

Acknowledgments

1 Introduction

1.1
1.2
1.3

Next Generation Databases
Persistent Programming Languages
Organization of The Dissertation

2 Persistence of Objects

2.1
2.2

2.3

2.4

2.5

Introduction Lo oL
Persistence of Objects in a Memory-Mapped 1/O Architecture
2.2.1 Persistent Heaps and Objects
2.2.2 Management of Persistent Heaps
Several Techniques for Dereferencing Persistent Pointers
2.3.1 Assumptions.
2.3.2 An Issue of Persistent Pointer Size
2.3.3 Page-at-a-time Swizzling : PAGEs
2.3.4 One-at-a-time Swizzling : ONEg
2.3.5 Non Swizzling Technique (1) : SLSy« o ...
2.3.6 Non Swizzling Technique (2) : OFFy
2.3.7 Non Swizzling Technique (3) : ORTy
Experiments and Results Lo oo
2.4.1 Environment Used
2.4.2 Dereferencing Benchmark 000000000
2.4.3 Benchmark Results and Discussion
Related Work and Summary00

3 Multiple Type Objects

3.1
3.2

3.3

Introduction
Multiple Type Concept e
3.2.1 Why Needed? e
3.2.2 Design Policies e
3.2.3 Syntax and Semantics
Implementation Details Lo
3.3.1 Persistent Heaps and Pointers

3.3.2 Strategy e
3.4 Related Work
3.5 Summary e e e e e e

4 Object-Oriented Views

4.1 Introduction L
4.2 Set Objects L

4.4 Experimental Results oo

4.3 Views and Their Implementation
4.5 Insertion and Deletion through Views

4.6 Virtual Set Attributeso
4.7 Summary . . o. ... e e

5 Conclusions

Bibliography

i

54
54
95
57
65
66
69
70

72

75

Abstract 1

Abstract

Databases become widely applied to such areas as computer-aided design, computer-aided
manufacturing, computer-integrated manufacturing, software engineering, and multimedia
applications. Data structures and data processes handled in these areas are so complex
that it is impossible to process such data efficiently with relational databases. Therefore,
many researchers and commercial organizations have focused on object-oriented databases
to benefit by their high abilities to model entities in the real world and good performance,
and developed prototype and commercial systems.

In this dissertation, we exploit memory-mapped I/O environment instead of using buffer
pool environment which almost other work employs to implement persistence of objects.
In the buffer pool environment systems have to convert data formats between on primary
memory and on secondary storage, and to decompose data bigger than the buffer size.
On the contrary, we can avoid the problem with the memory-mapped I/O environment.
This dissertation also discusses several implementations of persistent pointers. As a result,
we know the fact that performance of non-swizzling approaches is not so poor compared
with that of swizzling approaches. Moreover, with taking functionalities provided by non-
swizzling approaches into account, a non-swizzling approach can be a good alternative in
order to implement persistent pointers.

As we manipulate objects with a long life span, it is needed to change forms and/or
behaviors of persistent objects so as to adapt existed objects to up-to-date requirements
for applications. To this end, we introduce multiple type objects in this dissertation: any
persistent object can get/lose their types dynamically in this concept.

Also, this dissertation proposes object-oriented views. The view mechanism in relational

databases is quite convenient for users. The mechanism allows users to deal with relations

gooboobbbooooooao

Abstract 2

as what they expect, and provides securities on the relations in some sense. Recently many
researchers have tried to integrate the view mechanism in relational databases into object-
oriented databases. We propose a view mechanism that is implemented by applying the
multiple type concept to sets of objects. Update on a view can be automatically propagated

to its base set in the implementation.

gooboobbbooooooao

Acknowledgments 3

Acknowledgments

First of all, I would like to express my sincere appreciation to Professor Akifumi Makinouchi
at Kyushu University for his irreplaceable encouragement, constructive criticism, and guid-
ance. He is my supervisor at Kyushu University, and led me to this research field. He made
the course of my study I enjoyed even more enjoyable. The opportunities that he gave me
for conducting research were outstanding.

I also would like to express my gratitude to Professor Tim Merrett at McGill University,
Montréal, Canada, for his kindness of being my supervisor while I was attending McGill as
a visiting doctoral student. I really enjoyed my stay in Montréal. He suggested me that
type checking mechanism in multiple type concept could be one of key issues concerning our
work.

I gratefully appreciate the careful reading of this dissertation by Professor Kazuo Ushijima
and Professor Fumihiro Matsuo at Kyushu University. They were the committee members
of this dissertation, and gave me many valuable comments.

My thanks also go to Associate Professor Norihiko Yoshida in the Department of Com-
puter Science and Communication Engineering at Kyushu University for his valuable sug-
gestions and comments on the studies. Associate Professor Hirofumi Amano in Computer
Center at Kyushu University and Associate Professor Ge Yu in the Department of Com-
puter at Northeastern University, China, who has stayed at Kyushu University as a visiting
researcher, also deserve special thanks. They proofread this dissertation and gave me re-
markable comments making this dissertation better.

Anna Lin and Martin Santavy helped me to start my life in Montréal. My life there was
quite comfortable. Without their help, I could not have leaded such good time in Montréal.
I really appreciate their help. Pung Chitra Hay and Hon-Hing Chen are good friends from

gooboobbbooooooao

Acknowledgments 4

when I was at McGill University. They were very kind enough to share much time with me
at the university. I owed them and other friends at McGill University that I could touch
diverse cultures and enjoy them. I was able to skill up my English by communicating with
them.

I would like to offer special thanks to the members of Makinouchi and Yoshida Labora-
tories in the Department of Computer Science and Communication Engineering at Kyushu
University. In particular, I thank Keiichi Teramoto (currently with Toshiba Co., Japan) for
that he discussed various issues concerning most of this dissertation with me, and imple-
mented prototype systems to concrete our ideas. I would also like to thank Dr. Masatoshi
Arikawa (currently at Hiroshima City University) and Mr. Susumu Kuroki for all of the
assistance that they provided during my graduate career.

Finally, I would like to express my sincere gratitude and thanks to my father and my
mother for always believing in me and for helping me to believe that I could earn a degree
of doctor. Getting a degree is extremely hard work, and I could not have made it without

their unconditional supports.

gooboobbbooooooao

1 Introduction 5

Chapter 1

Introduction

1.1 Next Generation Databases

It is said that the first database management system in the world was IDS (Integrated Data
Store) which was available from General Electric in the U. S. in 1963. In 1968, IBM brought
out IMS (Information Management System), which was based on a hierarchical data model.
In 1970, the relational data model was proposed by E. F. Codd [Codd70]. This data model

has the following features:

o [t is simple.

It provides good data independence.

It provides nonprocedural data management languages.

It can be applied to distributed environments easily.

It is based on mathematical principles.

In the 1980s, many relational database (RDB) systems were developed and put on the
market. Since then, RDBs have been generally accepted around the world. These databases
have been mainly used in the business area, for example, for the management of personnel
matters and /or sales and inventory data in a company.

Also, in the 1980s, many researchers tried to apply database systems more and more

widely to such areas as knowledge bases, artificial intelligence, software engineering, computer-

gooboobbbooooooao

1 Introduction 6

aided design, computer-integrated manufacturing, and multimedia applications. Data pro-
cessed in these systems have complex structures and it is difficult to handle such complex
data efficiently with RDBs!. To model these new applications and to manage data in such
applications efficiently, object-oriented databases (OODBs) [ABD+89] have been focused
on. OODBs have their own shortcomings, though. For example, the model is not based on
mathematical principles; studies of OODBs have tended to make actual systems and applica-
tions rather than to investigate mathematical aspects. Therefore, there is no theoretical way
to design, compose, and decompose databases with the object-oriented concept. But, in our
opinion, current research tends to explore with OODBs, and to use the OODBs to manage
a large amount of complex data because of the high ability to model the new applications.

A goal of object-oriented database systems is to provide a computing environment merg-
ing programming languages and databases with which users can define and manipulate com-
plex objects, and can make programs with which they can process what they really expect
to do in order to support data-intensive applications. To this end, we have been designing
and developing a persistent programming language; using this language users can handle
persistent objects as easily as volatile objects. Persistent objects are the objects that can
be stored on secondary storage and can be reused after the program which creates them
terminates. The topic of the dissertation, persistent programming language, is an approach

to object-oriented database systems.

1.2 Persistent Programming Languages

Persistent programming languages are the languages which can handle persistent objects
and volatile objects in the same way, i.e., an object of any type in the languages can be
stored on secondary storage and can be reused [AB87]. Persistent objects are the objects
which exist beyond the life of the program that creates the objects, and users can make use
of them again and again until the objects are deleted from secondary storage. Therefore,
the languages include some storage mechanisms in addition to computational facilities that

usual programming languages provide.

!There are some studies to extend the relational data model to manipulate complex data, e.g., [ERDB90].

gooboobbbooooooao

1 Introduction 7

Programming languages have provided convenience to define complex data and to process
complex manipulations on them. However, it is difficult for the conventional programming
languages to deal with persistent objects. Conventionally, there is no way in programming
languages without using direct file I/O operations to store data on secondary storage and
reuse them after the termination of the program which created the data. Thus, users have to
make up some tricky devices to store and reuse complex data on secondary storage, or give
up treating complex data. To reduce the load of users, persistent programming languages, or
database programming languages, which handle persistent objects as easily as when handling
non-persistent objects, which are called volatile objects, in terms of both functionality and
performance, have been studied.

We have been designing and developing a persistent programming language called IN-
ADA.INADA is a part of our ongoing project named “Shusse-Uo” [AABIMT94|. Shusse-Uo
is a Japanese word meaning fishes that are called by different names as they grow larger.
Figure 1.1 shows the layers of systems in the project. INADA has such features as paral-
lelism and distribution as well as persistence of objects and set-oriented processing as shown
in Figure 1.1. We focus on the latter subjects in this dissertation, and do not touch on the

parallelism and distribution.

e End-user Language
e Computationally-Complete

WA RA SA Query Language

/ e Enhanced C++ Language
e Persistent Objects
I NA DA e Set-Oriented Processing

e Paralelism & Distribution

e Availablefrom C, C++
e Persistent Heaps

WAKASHI | shared Heaps

(Operating System (Memory-Mapped Environment))

Figure 1.1: Layers of Shusse-Uo project

We have tackled plenty of issues which we must face when we consider handling a large

gooboobbbooooooao

1 Introduction 8

number of persistent objects. This dissertation shows some of the issues, namely, how to
implement persistent objects and persistent pointers, multiple type objects, and object-
oriented views.

We adapted memory-mapped I/O environment to implement persistence of objects. The
environment has not so far been studied so enough that we have to examine how to implement
persistent pointers which are used to refer persistent objects and can be stored on secondary
storage. To this end, we simulated several conversion mechanisms between in-memory and
in-disk addresses in the environment.

As long as buffer pool approaches are used to make objects persistent, there are at least

the following two problems.

e There are more than one data format in the buffer pool oriented approach [DMFV90]:
in-disk data and in-memory data formats. Therefore, systems must build up some
device for transferring persistent objects in in-disk forms to those in in-memory forms

and vice versa.

e When you handle data larger than the size of a buffer, you have to decompose the data
into fragments which fit in the buffer, and to re-form original data from the decomposed

fragments when they are needed.

To avoid these problems, we decided to take a memory-mapped approach to implement
persistence of objects. And, we examined several implementations of persistent pointers in
the memory-mapped I/O environment. The several implementations include both pointer
swizzling and nonswizzling techniques. Pointer swizzling techniques convert pointers from
their disk format to a more efficient in-memory format (a direct memory address), and assign
the in-memory address into the pointer variable to improve the performance of dereferencing
persistent pointers.

We introduced the concept of multiple type objects. Persistent objects might be shared
among many programs. However, each program uses the persistent objects in its own way.
Furthermore, entities in the real world modeled by persistent objects will change as time
goes by. Therefore, persistent programming languages should provide some mechanism with
which users can handle persistent objects which may change their characteristics whenever

needed. The multiple type object mechanism is introduced for this.

gooboobbbooooooao

1 Introduction 9

Any persistent object can get and /or lose any type, or class in C++ and INADA. Adding
and deleting types can be done at any time they are needed. Thus, users can model real world
entities which change themselves as time goes by with this concept. It has to be noticed that
the multiple inheritance mechanism cannot cover all the facilities that the proposed multiple
type object mechanism.

We also proposed views in the object-oriented framework. Many researchers have dis-
cussed integrating view mechanisms into object-oriented database systems [MM91, Rund92,
SLTI1, TYI8S]. However, they could not implement the function of views completely. They
tried to implement object-oriented views as virtual classes. In order to create a view, they
needed to reconstruct the class hierarchy for integrating the virtual classes into the hierarchy.
It is very difficult because there is one and only one class hierarchy in their models. We do
not take this approach. Instead, we implement an object-oriented view as a virtual set. A
set in INADA is an object having interfaces which are defined by the system so that the
system can process set-oriented queries. More detailed explanation concerning this is given

later on.

1.3 Organization of The Dissertation

The remainder of this dissertation discusses the issues mentioned above in detail.

Chapter 2 discusses how to make objects persistent and to implement persistent pointers
within the framework of the memory-mapped file I/O environment. To examine several
approaches to persistent pointer implementations, we simulated all the several approaches
as using the class library of INADA. We show the result of the simulation, and discuss them
in Chapter 2. The discussion concludes that a non-swizzling approach is one of good choices
for implementing persistent pointers.

Chapter 3 introduces multiple type objects. The syntax and semantics in respect of the
objects in INADA are explained in detail. An implementation of multiple type objects is
also described. The implementation exploited the flexibility of the non-swizzling approach,
which is a natural consequence of the discussion in Chapter 2.

Chapter 4 proposes object-oriented views. Some simple examples are employed to help

readers understand the mechanism intuitively. Chapter 4 also proposes programming con-

gooboobbbooooooao

1 Introduction 10

structs to define views in INADA, and show how to implement them with functions provided
by the persistent programming language. Moreover, a part of the results gotten from a simple
simulation of the examples is shown in Chapter 4.

Chapter 5 concludes this dissertation, and presents some future work.

gooboobbbooooooao

2 Persistence of Objects 11

Chapter 2

Persistence of Objects

The programming languages which allow to treat with persistent objects as easily as volatile
objects have been required. This chapter discusses techniques to implement persistence of
objects and persistent pointers. In particular, memory mapped I/O environment is investi-
gated as an underlying platform.

Several techniques for dereferencing persistent pointers have been proposed to improve
performance of object-oriented persistent systems. This chapter describes performance ex-
periments to compare several techniques of dereferencing persistent pointers including swiz-
zling and nonswizzling approaches in a memory-mapped I/O environment, and discusses
trade-offs among them. All techniques were implemented and evaluated in a persistent pro-
gramming language called INADA, which exploits facilities provided by a memory-mapped
I/O architecture for implementing persistence of objects. The experiments disclose the fact
that the differences among the techniques compared in terms of performance are not signif-

icant enough to justify discarding nonswizzling techniques.

2.1 Introduction

With the capability of modeling entities in the real world, object-oriented database systems
have been more and more widely accepted for such areas as computer-aided design, computer-
aided manufacturing, geographic information systems, and multimedia applications. In these
systems, structures of objects are likely to be complex, i.e., objects might have many pointers.

Therefore, it must be the key whether a persistent system efficiently can store the pointers

gooboobbbooooooao

2 Persistence of Objects 12

in secondary storage and translate their representations on primary memory into those on
secondary storage and vice versa. Some existing systems adapt ‘pointer swizzling’ approach
for that because it is believed that the total performance in a swizzling approach is better
than in a nonswizzling one (e.g.,[Wil90, WD92, Moss92]).

We think, however, there are problems in the previous work. First, the techniques com-
pared in the previous work are not implemented in a uniform system because the systems
used for comparison may not be so flexible enough to do that. Secondly, systems using
memory-mapped /O utilities are not well investigated except for ObjectStore [LLOWI1].
As a result, we wonder whether it is really always the case that a pointer swizzling approach
outperforms a pointer nonswizzling one.

This chapter reports comparison among several pointer swizzling and nonswizzling tech-
niques under a memory-mapped I/O environment showing how they are different experimen-
tally in terms of performance, and discusses flexibility of the techniques. For the experiments,
several techniques of persistent pointers were built into a persistent programming language
called INADA [AA93, TAM94, AM95].

INADA is now under development at Kyushu University for supporting data-intensive
applications. It is a C++-based language and built on a distributed paged-object storage
server called WAKASHI [BM94], which has been developed using a memory-mapped 1/0O
architecture. WAKASHI can avoid mainly the following two problems due to the facilities

of the architecture (see Figure 2.1):

o Transformation between in-disk and in-memory formats.
In buffer pool oriented architectures [DMFV90], there are two types of buffers, i.e.,
page buffer and object buffer. Since the format of an in-disk object stored in a page
buffer is different from that of an in-memory object in an object buffer, transformation

is needed whenever objects move between the buffers.

e Fragmentation of large data [Maki90].
When handling a data larger than the size of a page, the data must be fragmented so
as to be stored in a page. This causes inconvenience if it is expected that the whole
data to be in a continuous address space for uniform processing. For example, a large

image data would remind the readers of this problem.

gooboobbbooooooao

2 Persistence of Objects

13

virtual address space

e

data format
conversiol

8 1 3

4 2 5

buffer pool

datatransfer

—

secondary storage

=y

Figure 2.1: Transformation of data formats

virtual address

—

persistent heap area

mapping

secondary strage

Y
S
) @iﬁi@(

~

Figure 2.2: Memory-mapped I/O environment

Therefore, it is important to study the memory-mapped I/O architecture (see Figure 2.2).

The swizzling and nonswizzling techniques shown in this chapter are not new. The main

contributions of this chapter are:

i) Comparison among several techniques in only one uniform platform and under a

memory-mapped [/O environment.

ii) Experiments focusing on the cost of dereferencing persistent pointers.

The results show that the performance of nonswizzling techniques is not so significantly

gooboobbbooooooao

2 Persistence of Objects 14

poorer than that of the compared swizzling techniques. In addition, nonswizzling techniques
can offer greater flexibility /functionality in some applications.

The experiments used a simple but enough powerful benchmark, called Dereferencing
Benchmark, instead of well-known benchmarks, e.g., OO1 [CS91] and OO7 [CDN94]. These
famous benchmarks are much sophisticated that they can be used for measuring many aspects
of OODBSs. However, the objective of using a benchmark in the experiment is to focus
only on the cost of dereferencing persistent pointers, i.e., the most important factors are
the number of persistent pointers in a page and the ratio of persistent pointers used in a
transaction to the number. From the viewpoint, none of the famous benchmarks are suited
for that. Thus, we designed and used Dereferencing Benchmark in which an object has
persistent pointers, whose numbers can be parameterized, and dummy integers. Its details

are described later on.

2.2 Persistence of Objects in a Memory-Mapped I/0
Architecture

[DMFV90] discusses three alternative client/server architectures that are different in storage
management for object-oriented database systems. In [DMFV90], there are two kinds of
buffers for storage management, namely page buffer and object buffer (i.e., object cache).
This approach has at least two drawbacks in addition to the problems mentioned in [KG+90].
One is the overhead of transformation between in-disk and in-memory formats. Since the
format of an in-disk object stored in a page buffer is different from that of an in-memory ob-
ject, some transformation mechanisms are required whenever objects move between the page
buffer and the object buffer. The other problem occurs when treating long data [Maki90].
When a piece of data we want to handle is too long to be stored in a page, the data must be
fragmented. This causes inconvenience when the whole data must be treated as a continuous
data with uniform processing. The processing of such large image data reminds the readers
this problem.

By using a virtual memory approach for storage management, we can avoid these prob-

lems effectively [Wil90]. This section describes how to implement persistence of objects in

gooboobbbooooooao

2 Persistence of Objects 15

INADA using the virtual memory approach in a memory mapped I/O architecture.

2.2.1 Persistent Heaps and Objects

INADA provides persistent heaps (PHs) [TAM94, AM95] which are portions of the virtual
address space and mapped onto files on secondary storage under a memory mapped I/O
environment. When a user makes an object be persistent, the user creates the object on a
PH like as creating an object on a heap in C++. The difference between making a volatile
object on a heap and making a persistent object on a PH is that a declaration of a persistent
pointer has the keyword persistent, and the operator new has a parameter indicating the
PH when creating persistent objects [AA93]. Since a PH is a part of the virtual address
space, a user can code to manipulate persistent objects in the same way as ordinary volatile
objects. In other words, a user can access and manage a file as it is just like as an ordinary

heap (Figure 2.3).

virtual address space

secondary storage

Persistent Heap w

mapping
M

DD
DD

tac

Figure 2.3: A persistent heap

PHs are implemented by using memory mapped I/O utilities. The utilities are currently
provided by some operating systems such as Mach [Bar+| and SunOS. WAKASHI [BM94],
a distributed paged-object storage server, enhances their memory mapped facilities so as to

transfer data implicitly between secondary storage and physical memory, and INADA has

gooboobbbooooooao

2 Persistence of Objects 16

Offset | Ph_ID | Size

Object Area

Figure 2.4: A memory block in a PH

been developed with exploitation of WAKASHI. Hence users can manage persistent objects

without specifying any I/O operations explicitly.

2.2.2 Management of Persistent Heaps

The key issue in the management of PHs is how to allocate objects on the PHs. This
subsection describes the way how to allocate objects on a PH used in all the techniques in
the chapter.

To make an object persistent, a block including the object with some information for
management of the space in a PH is created. Figure 2.4 depicts the block used in all the
techniques in the experiment. 0ffset indicates the offset address referring the next block
in a PH. In Ph_ID the identifier of the PH is held. This is not actually needed, since this
can be calculated from the address of the next block, but for excluding the overhead the
information was included in a block. Size stores Object Area’s size of the block. It is
possible to do garbage collection of the PH with the information in the block. By making
the list of blocks in a PH, we manage allocation and deletion of objects in the PH. Each
size of 0ffset, Ph_ID, and Size is set to 4-byte, thus the size of the whole information is 12

bytes and the size of a block needed for a persistent object whose size is S is S + 12 bytes.

2.3 Several Techniques for Dereferencing Persistent
Pointers

As mentioned later on, creating and traversing persistent objects were evaluated. Thus

this section discusses implementations and characteristics of several pointer swizzling and

gooboobbbooooooao

2 Persistence of Objects 17

nonswizzling techniques especially on the two operations.

2.3.1 Assumptions

To compare several techniques, the following conditions were assumed in the experimenta-

tion.

e The environment of a memory-mapped I/O architecture is used to implement all the

swizzling and nonswizzling techniques.

e The size of a persistent pointer variable is 4-byte. This is the same size of a C++

pointer (see the next subsection for the reason).

o All the techniques are implemented to allow an application program to use several PHs

at a time.

e Only one benchmark program is used by means of building dereferencing mechanism

into INADA class library.
The following five techniques were implemented and evaluated within INADA.

e Pointer swizzling techniques
— PAGEgs: Page-at-a-time swizzling
— ONEs: One-at-a-time swizzling
e Pointer nonswizzling techniques
— SLSy: Single level store

— 0FFy: OID holds an offset

— ORTy: OID holds an entry number of the object reference table (ORT)

A technique called “object-at-a-time” swizzling [Moss92] was not included in the exper-
iment because its performance might be between those of the PAGEs and the ONEg. These

five techniques can simulate almost all known possible techniques.

gooboobbbooooooao

2 Persistence of Objects 18

Implementation of PAGEs and ONEs required modification of WAKASHI, because, as the
readers can see later on, the storage server must record locations of persistent pointers on
PHs with a ‘log table’. The log table is manipulated by both a storage server process and a
client process where an INADA program runs. Therefore, the table is located in the memory
(denoted as ‘shared memory’ in the following) shared by the server and client processes.
The current WAKASHI does not have such a mechanism. Note that a module of WAKASHI
referred to as ‘storage manager’ in the following figures worked in the WAKASHI server.
The evaluation were done in one-site environment; hence the functionality of WAKASHI as

a distributed server was not used.

2.3.2 An Issue of Persistent Pointer Size

In INADA programs, a persistent pointer consumes 4 bytes, that is, the size of an object is
same whenever the object holds either persistent pointers or ordinary C++ pointers. Thus
users can code methods applicable to objects including any kind of pointers. Let us consider

the following example.

class Part_A {
char* name;

int p-id = 0O;
) friend int check_id(voidx);
class Part_B {
persistent char* name;
int p_id = 1;
, friend int check_id(void*);
int get_p_id(void* ptr) {
// This can be applied both Part_A and Part_B
int id = (int) (*((char*)ptr + sizeof(charx)));
return id;

The method get_p_id() includes sizeof (type name) function, which returns the size of
type name. Because the value of “sizeof (char*)” is equal to that of “sizeof (persistent
charx)” due to the restriction, the method can be applied to objects of both Part_A and
Part _B.

This assumption is important in order to allow users to avoid writing similar but redun-

dant codes. Systems treating persistent objects should obey this rule as far as 64-bit address

gooboobbbooooooao

2 Persistence of Objects 19

ph_id offset
8 24 bits 32 bits
a persistent pointer a direct memory pointer

Figure 2.5: Pointer formats in PAGEg

space cannot be widely used.

2.3.3 Page-at-a-time Swizzling : PAGEg

In this scheme all persistent pointers in a page are translated into direct memory pointers at
page- fault time. Therefore, programs can always see persistent pointers as virtual memory
pointers after the target page is swapped in. [Wil90] describes several virtual memory
techniques of pointer swizzling at page-fault time. An approach of this type is also used
in ObjectStore [LLOWO1] (its implementation details, however, are not currently available).
Although the implementation in the experiment might be different from the others in detail,
we believe that the basic idea is identical.

Figure 2.5 depicts the pointer formats used in the experiment. ph_id holds the identifier
of the PH in which the object is located, and offset stores the offset address of the object
from the top of the PH.

In PAGEg, the storage manager not only keeps the correspondence between a PH and its
file on secondary storage but must know the locations of all persistent pointers on the PH
as well. To this end, a ‘log file’ (containing a ‘log table’) is used.

Figure 2.6 illustrates what happens when creating persistent objects. (1) If a reference
to a persistent object (i.e., a persistent pointer) is created on a PH, the system records the
location of that in the log file. (2) When the page is going to be swapped out, the storage
manager looks for locations of all pointers on the page and (3) unswizzles them using the
log file. Then, (4) the page is swapped out to secondary storage. Note that even if all the
persistent pointers in the page have been swizzled, the page is not ‘dirty’ unless data on the

page is changed at all. After the application program finishes, all references to the persistent

gooboobbbooooooao

2 Persistence of Objects 20

1 direct memory pointer

virtual address space persistent pointer

secondary storage

storage manager e

N~
P ? i _______________________ < PH file
a=i=1 ad L
reference
X ﬂ log file

1) W
record the location of
this swizzled pointer

~

> log table

shared memory

Figure 2.6: Creating objects in PAGEg

objects in the PH are unswizzled and the PH is unmapped. Finally, (5) the log file is written
into secondary storage. As shown in Figure 2.6, the log table is shared by the client and the

storage manager; therefore, the table is implemented in a shared memory.

1 direct memory pointer

virtual address space persistent pointer

secondary storage

storage manager N

PH) @) N PH file

reference

log file

~

shared memory log table

Figure 2.7: Traversing objects in PAGEg

Figure 2.7 illustrates traversing persistent objects. When an application program accesses

a page for the first time and a page fault occurs, all the persistent pointers contained in the

gooboobbbooooooao

2 Persistence of Objects 21

page must be translated properly into direct memory pointers. For the translation, (1) the
‘log file’ is set into the shared memory before the program starts. When the accessed page is
swapped into primary memory, (2) the storage manager looks for all the persistent pointers
in the page with the ‘log file’ and (3) swizzles them. (4) After they are all swizzled, the page
can be accessed by the application program.

One of the advantages of this technique is, obviously, that programs can access to per-
sistent objects at memory speeds after swizzling.

A disadvantage, as described in [WD92], is that unnecessary swizzling and unswizzling
overheads might arise. This is because swizzling and unswizzling are done at the granularity

of page, and it is not likely to happen that a program accesses all the pointers located in a

page.

2.3.4 One-at-a-time Swizzling : ONEg

In this approach, persistent pointers are swizzled one-at-a-time when each of them is actually
dereferenced. Therefore, it avoids the unnecessary swizzling and unswizzling overhead which
may occur in PAGEg. But, whenever a persistent pointer is referred, it must be checked
whether the pointer has been already swizzled or not. Figure 2.8 shows the formats of
pointer variables used for the experiment. If the most left bit value of a persistent pointer
is 0 the pointer has been swizzled, and if the value is 1 the pointer has not been swizzled
yet. One of the disadvantages is, therefore, that the number of PHs which an application
program can use simultaneously is restricted to half of those in other approaches examined

in the experiments.

tag ph_id offset
y3 y3

17 24 bits 32 bits
a persistent pointer a direct memory pointer

Figure 2.8: Pointer formats in ONEg

Figure 2.9 shows what is done when persistent objects are created in a PH and no access

gooboobbbooooooao

2 Persistence of Objects 22

1 direct memory pointer

virtual address space persistent pointer

secondary storage
storage manager e
_/
P
PH L N ﬁ' i « PH file
_____________ = i
_/

(1) create a persistent object and
a reference (OID) to the persistent object

Figure 2.9: Creating objects in ONEg

to the objects occurs. (1) When a persistent object is created, the virtual address of the
object is converted to a persistent pointer value with setting the value of its tag to 1, and the
value is assigned to a persistent pointer variable. When the dirty page in which the persistent
pointer is located is going to be swapped out of the virtual memory, (2) the storage manager
writes the page on secondary storage as it is. After creating objects, (2) such dirty pages in

the PH are all written back to secondary storage as they are.

1 direct memory pointer

virtual address space persistent pointer

secondary storage

P storage manager e
deref & swizzle N
2) & B PH file
o m N
< (4) (6)
reference
. _/
(3) record the location of
this swizzled pointer =

shared memory

> log table

Figure 2.10: Traversing objects in ONEg

gooboobbbooooooao

2 Persistence of Objects 23

1 direct memory pointer
B persistent pointer

virtual address space
secondary storage

storage manager e
_/
/\A
PH é < PH file
...................... D o R S
_____________ D/ SE=
_/

Figure 2.11: Non Swizzling SLSy

Figure 2.10 shows what happens when a program traverses persistent objects. (1) When
the program accesses a page in a PH for the first time and the page will be swapped into
primary memory, no persistent pointer in the page is swizzled and the page is swapped as
it is. When a persistent pointer in the page is referred (2) it is checked whether the pointer
has been swizzled or not. Naturally the pointer is not swizzled yet, (3) it is swizzled and the
location of the reference is recorded in the log table. Note that the check is always performed
whenever the pointer is referred. After execution of the program, (4) the storage manager
looks for all swizzled pointers in the PH using the log table and (5) unswizzles them. Then,
(6) all pages of the PH are written back into the disk. It should be noted that any page
including at least one swizzled pointer has to be marked as ‘dirty’ and be written back on
the disk with its unswizzled pointer, even if the application program has not modified any
data in the page. While the log table used for PAGEg should be persistent, the log table for
ONEs does not need to be.

2.3.5 Non Swizzling Technique (1) : SLSy

This technique maps a database file always on the same portion of the virtual address space,
as shown in Figure 2.11. [SZ90] describes Cricket database storage system which provides
the abstraction of a shared, transactional single-level store and argues for the effectiveness
of the store.

With the single-level store, there is no need of pointer conversion. There is no distinction

gooboobbbooooooao

2 Persistence of Objects 24

between persistent pointers and non-persistent pointers. As a result, this technique can
eliminate the overhead which would be incurred in any other approach, and the cost of
manipulating persistent objects through persistent pointers would be identical to that of
through ordinary C++4 pointers.

However, it has some problems which may arise when using multiple PHs. One problem
is that every database files must always be mapped onto the same places in the virtual
address space of each application. Next is that an application has to map all the PHs, which
have been created, onto its virtual space when the application wants to create a new PH,
because all PHs must be access-protected before creating a new PH to avoid overlapping
of PHs’ spaces. Another problem is that expanding a PH between two consecutive PHs is
practically impossible.

Although SLSy is not so practical for 32-bit address space, it should be reconsidered in
future when 64-bit address space becomes available and the time could not be so remote.

We include SLSy in evaluation for only comparison.

2.3.6 Non Swizzling Technique (2) : OFFy

The persistent pointer format used for this technique is shown in Figure 2.12.

ph_id offset

8 24 bits
a persistent pointer

Figure 2.12: Persistent pointer format in OFF y

This format consists of two fields. One is ph_id which indicates the identifier of the PH that
contains the persistent object pointed to by the pointer. The other field is offset which
holds the offset address of the object from the beginning of the PH. Whenever an application
program accesses a persistent pointer, the virtual address is calculated by adding the offset

in the pointer to the virtual address of the PH whose identifier is ph_id.

gooboobbbooooooao

2 Persistence of Objects 25

1 direct memory pointer

virtual address space persistent pointer

secondary storage

storage manager
deref

PH LA/ PH file

Figure 2.13: Non swizzling OFF y

An advantage of this technique is that the cost for dereferencing seems relatively small,
since only addition operation is involved.
The main disadvantage is that relocation of objects in a PH is difficult and costly, if not

impossible (SLSy has the same difficulty).

2.3.7 Non Swizzling Technique (3) : ORTy

The persistent pointer format used is shown in Figure 2.14. A persistent pointer used consists
of two fields: ph_id and ort_id. ph_id represents the identifier of the PH in which the
persistent object referred to by the pointer is allocated. ort_id indexes the object reference
table (ORT) of the PH. The ORT is a large array and an entry of it contains the offset
address of the object.

ph_id ort_id

8 24 bits
a persistent pointer

Figure 2.14: Persistent pointer format in ORT y

In the technique, whenever a persistent pointer is used the entry in the ORT is looked for

from the ort_id, then the virtual address can be calculated by adding the offset value stored

gooboobbbooooooao

2 Persistence of Objects 26

in the entry to the top address of the PH. Thus, this type of pointer dereferencing, referred
to by ORTy in this dissertation, does not swizzle any persistent pointer. The technique is

adapted in the current system of INADA.

I direct memory pointer

virtual address space persistent pointer

secondary storage

storage manager

PH PH file

CEEST P ~———

object reference
table

Figure 2.15: Non swizzling ORT y

Figure 2.15 shows what is going on when dereferencing persistent pointers. Dereferencing
persistent pointers costs more than OFF y because (1) more PH space is needed to store the
ORT, and (2) table-look-up is required for getting actual addresses of objects. However, this
technique has several advantages in terms of management of PHs. One is that ORTy allows
easy relocation of objects in a PH space, so that it can support garbage collection very easily.
This benefits such applications as repeatedly allocate and deallocate persistent objects. Also,
ORTy could perform dereferencing persistent pointers more safely. For example, entries of the
table could hold information to check whether the persistent pointer value is set correctly.
Moreover, the INADA system can avoid the overhead caused by the calculation by doing
that the references are processed through a volatile pointer whose value is assigned to by
processing simple operation with the persistent pointer [TAM94]. Note that this optimization

was never used to be fair in the experiments.

gooboobbbooooooao

2 Persistence of Objects 27

2.4 Experiments and Results

2.4.1 Environment Used

All experiments presented in this section were performed on an OMRON LUNA-88K work-
station running under Uni-OS Mach Ver 1.34, which is actually Mach 2.5. The system had
4 MC88100 CPUs with 25.0 MHz clock and 32 megabytes main memory. The disk used to
store both benchmark program and its data was a HITACHI DK515C (330 megabytes). The
virtual memory swap area on this machine was located in a HITACHI DK312C disk, and
was up to 100 megabytes in size. The page size was 8 Kbytes. GNU C++ compiler version
2.6.3 and libg++, which was the GNU C++ class library, version 2.6.2 were used.

2.4.2 Dereferencing Benchmark

To evaluate and compare several implementations of persistent pointers in the memory-
mapped I/O environment, a simple benchmark program, called Dereferencing Benchmark,
was made. Not a few benchmark programs such as OO1 [CS91], OO7 [CDN94], Hyper Model
Benchmark [AB+90], and a complex object benchmark [DMFV90] have been proposed so
far. They are much sophisticated that they can be used for measuring many aspects of
object-oriented database systems. However, the aim of this experiment is to compare several
strategies of dereferencing persistent pointers, and an ideal benchmark for that should be so
simple that we can investigate the cost of dereferencing alone. In fact, to evaluate the cost
the most important thing is that we could know exactly how many pointers are in a page
and how many pointers of them are really used in a transaction. Hence we designed the
Dereferencing Benchmark.

In the benchmark, a persistent list is used. Each node in the list consists of Num OfPointer
persistent pointers and NumOfInteger integers as dummy data items. One of the pointers
is linked to a neighboring node, and the rest of them are linked to the node holding the
pointers (see Figure 2.16). We set NumOfPointer + NumOfInteger = 31 in the experiment
for that the object size needed could be constant even if the numbers were changed.

The form of list was adopted so that traversing a linear list could cause page faults

very easily, and NumO fPointer — 1 persistent pointers in a node could represent unused

gooboobbbooooooao

2 Persistence of Objects 28

NumOfint. NumOfPointer

Figure 2.16: Dereferencing Benchmark

persistent pointers for a transaction.

The benchmark program consists of two work sessions. One is the create session where
the persistent list is created, and the other is the traversal session where the list is traversed
from node to node. No method invocation without returning the neighboring node is involved

when visiting nodes. Each session includes two or three sub-sessions as follows:

i) create session

(1) preparation

(2) creation of objects
ii) traversal session

(1) preparation
(2) cold traversal

(3) hot traversal (20 times traversals)

The preparation sub-sessions in both the create and traversal session include the cost of
initializing PHs and a log table, if necessary.

There are two types of traversal; cold and hot. The cold traversal means the first traversal
of the list, which is not cached yet in primary memory. The hot traversal represents the
total of 20 times traversals of the same list after the cold traversal. In this case, the whole,

or a part of, database is cached.

gooboobbbooooooao

2 Persistence of Objects 29

Three different pairs of (NumO fPointer, NumO fInteger) were evaluated; (10, 21),
(20, 11), and (30, 1). Therefore the memory block for a node consumes 31 x 4+ 12 bytes (see
Section 2.2). The evaluated database had 4000 nodes, thus about 80 pages were needed to
store the node objects. The whole database could be memory resident in the environment
used.

For the sake of brevity, only one PH was used in each experiment, although all the
implemented techniques allowed to manipulate several PHs as known from the assumption
mentioned before. In addition, none of such utilities as transaction, concurrency control,
and recovery provided by the storage server was included in the evaluation. Therefore, the

results showed the overhead for dereferencing persistent pointers alone.

2.4.3 Benchmark Results and Discussion

The time reported in this subsection is the average elapsed time of ten runs of each session.

Creation

Table 2.1 presents the create session times of databases in which the pairs of (NumO f Pointer,
NumO fInteger) in a node are (10, 21), (20, 11), and (30, 1). As the number of pointers
increases, the costs of swizzling techniques increase more than those of nonswizzling ones.

In creating objects, several operations are involved.
i) Allocating persistent objects (i.e., nodes) in the PH.

ii) (1) Assigning pointer values to persistent pointer variables in the persistent objects

in the cases of SLSy and PAGEg, or
(2) Assigning proper OID values calculated from the pointer values to persistent
pointer variables in the cases of ONEg, OFFy and ORTy.

iii) Dereferencing persistent pointers in order to link nodes, and so on.

SLSy has the best performance obviously. The costs of OFFy and ONEg are next, since they
use the similar ways for pointer conversion. Both PAGEs and ORTy incur larger overhead. In

PAGEs the cost of getting entries in the log table in order to keep tracks of persistent pointers

gooboobbbooooooao

2 Persistence of Objects

Table 2.1: Creation (in milli-seconds).

(NumO f Pointer NumO f Int.)=(10,21)

Technique | Prep. | Create || Total
PAGEg 395 1020 | 1415
ONEg 267 838 | 1105
SLSy 58 802 860
OFF v 47 835 882
ORTy 45 1555 || 1600

(NumO f Pointer NumO f Int.)=(20,11)

Technique | Prep. | Create | Total
PAGEg 397 1248 | 1645
ONEg 263 852 || 1115
SLSy 54 823 877
OFFy 47 844 891
ORTy 40 1559 || 1599
(NumO f Pointer NumO fInt.)=(30,1)
Technique | Prep. | Create | Total
PAGEg 395 1444 || 1839
ONEg 266 872 | 1138
SLSy 53 840 893
OFFy 49 862 911
ORTy 42 1557 || 1599

for (1) of ii) is the reason, and in ORTy the costs of both getting entries in the object reference
table to construct persistent pointer formats for (2) of ii) and dereferencing pointers used to
link nodes for iii) are the reasons. While they are similar in getting entries, there are many
different aspects. In the creation, PAGEg creates 4000 x NumO f Pointers + 2 entries in the
log table for (1) of ii). On the other hand, ORTy creates 4000 + 1 entries in the ORT in i),

gooboobbbooooooao

2 Persistence of Objects 31

performs calculation of the persistent pointer value from the virtual address 4000 times in
(2) of ii), and dereferences pointers 4000 times in iii). It is interesting to note that the costs

of all techniques except for ORTy increase as the number of pointers created increases.

Traversal

Table 2.2 reports the times of the traversal sessions of databases in which the pairs of
(NumO f Pointer, NumO fInteger) in a node are (10, 21), (20, 11), and (30, 1). Each
preparation times are roughly same as in the creation session of all pairs. Cold(1) stands for
the time of the cold traversal, and Hot(20) does the total time of the 20 traversals after the
cold traversal.

Since all pointers are swizzled before the hot traversals in PAGEg, it incurs essentially no
overhead, that could be revealed by comparing with SLSy.

Both OFFy and ORTy techniques involve pointer value conversion whenever persistent
objects are accessed. Especially in ORTy, dereferencing a persistent pointer entails more
interaction with the object reference table manager to obtain address of the referenced object.

Obviously, the more the number of objects increases, the worse the performance of PAGEg
must become. In the experiments the number of nodes was 4000 so that all data were memory
resident. If all data could not be on primary memory, the performance of the swizzling

techniques would become worse.

2.5 Related Work and Summary

This chapter studied the way of achieving persistence of objects, and examined several
pointer swizzling and nonswizzling techniques within a memory-mapped 1/O architecture.
Implementations of such different techniques in the INADA framework were easy owing to
INADA’s flexibility. However, some slight modification of WAKASHI was required for the
implementations.

[Wil90] describes a pointer swizzling scheme based on a virtual memory technique. In

the scheme, persistent pointers are swizzled to normal pointers at page fault time. A similar

approach is used in ObjectStore [LLOWO1].

gooboobbbooooooao

2 Persistence of Objects 32

Table 2.2: Traversal (in milli-seconds).

(NumO f Pointer NumO f Int.)=(10,21)

Technique | Prep. | Cold(1) | Hot(20)
PAGEg 398 713 81
ONEg 348 708 187
SLSy 41 590 80
OFF y 36 637 167
ORT y 37 1288 230

(NumO f Pointer, NumO f Int.)=(20,11)

Technique | Prep. | Cold(1) | Hot(20)
PAGE; 401 7T 81
ONEg 345 707 188
SLSy 38 590 80
OFF 36 640 162
ORTx 41 1270 232

(NumO f Pointer NumO fInt.)=(30,1)
Technique | Prep. | Cold(1) | Hot(20)

PAGEs 400 836 79
ONEg 348 719 183
SLSy 41 583 80
OFF 38 644 166
ORT N 39 1267 226

[Moss92| presents a detailed analysis on performance of some swizzling and nonswizzling
schemes. The author takes an object-at-a-time approach to swizzling under which all pointers
in an unswizzled object are swizzled immediately when the object is first accessed.

[WD92] describes the relative performance of several versions of EPVM (E Persistent Vir-

tual Machine) 2.0 and compares it with several alternative software architectures including

gooboobbbooooooao

2 Persistence of Objects 33

ObjectStore V1.2. EPVM 2.0 supports a pointer-at-a-time swizzling scheme (referred as the
one-at-a-time scheme in this dissertation) and uses software checks to distinguish swizzled
and unswizzled pointers.

[KK93] classifies and evaluates different pointer swizzling approaches. The paper, how-
ever, uses an object manager called GOM, which is based on the EXODUS storage manager,
or on a buffer pool oriented architecture.

The pointer swizzling techniques described in this chapter come from these previous
work. Comparison among several techniques has been already done in [WD92] and [Moss92].
The key difference of our work from theirs is that the comparison was done in a same
framework although the benchmark program was fairly simple. In our work, all the swizzling
and nonswizzling techniques compared were built into INADA in the memory-mapped I/0O
architecture. In [WD92], different systems with different architectures were compared. In
[Moss92], the software used was not based on memory-mapped I/O architecture, but on also
a traditional buffer pool oriented architecture.

Our experimental results show that a nonswizzling approach outperforms swizzling ones
in cold case. Also, the nonswizzling approaches are not much behind the swizzling ones
in hot case. The pointer swizzling approach is believed to give much better performance
when database is loaded in primary memory. Our experiments show that it is not the case
when the architecture is based on the memory-mapped I/O. In the environment a swizzling
approach like PAGEs has the big overhead for unnecessary swizzling and unswizzling, since
the size of data moving from secondary storage to primary memory and vice versa is not the
size of buffer pool but the size of page in the environment.

Taking the flexibility provided by ORTy into account, the ORTy technique can be one of
good choices for handling persistent pointers. Table 2.3 indicates an overall evaluation of
the five techniques. The numerical values stand for the ratio to the performance of SLSy in

the case that NumO f Pointer = 20.

gooboobbbooooooao

2 Persistence of Objects

34

Table 2.3: Overall evaluation

performance functionality
prep. | create | cold | hot (i) (ii)
PAGEg | XX 1.5 1.3 1.0 X Vv
ONEg X X 1.0 1.2 2.4 X vV
SLSy V 1 1 1 X X
OFFy | +/ | 10 | 1.1 | 20 | x V
ORTy | | 1.9 | 22 | 29 | v | WV
(i) Garbage collection
(ii) Flexibility for managing of PHs
Symbols: Nav4 Very Well
Vv Well
X Poorly
X X Very Bad

gooboobbbooooooao

3 Multiple Type Objects 35

Chapter 3

Multiple Type Objects

In general, it takes a lot of time to decide the forms of classes, or types, in database design.
This is because the forms of objects stored in a database can hardly be changed. If the
objects can get and lose types dynamically, this can be solved. This chapter describes design
of multiple type objects in INADA. Any persistent objects in INADA may get any types at
any time the types are needed, and may lose any unnecessary types dynamically. INADA is
an enhanced C++ language; it borrows the object model of C++ and extends it to provide
facilities needed for processing on a large amount of persistent objects. Also, implementation
of multiple type objects is shown in this chapter. This implementation exploits the type

system of C++ just as it is.

3.1 Introduction

For the ability to model real world entities, many database researchers have investigated
object-oriented databases as designing and developing C++-based database or persistent
programming languages, e.g., E [RC89], O++ [AG89], Oy [Deu+90], ONTOS [Ont94], and
ObjectStore [LLOWO1]. This is mainly because C++ [ES91] is a general purpose program-
ming language based on C: in addition to the facilities provided in C, C++ provides classes,
inline functions, operator overloading, function name overloading, constant types, and tem-
plates. Besides, C libraries can be used from a C++ program, and most tools that support
programming in C can be used with C++.

However, none of them has any abilities to model real world entities’ facets which change

gooboobbbooooooao

3 Multiple Type Objects 36

dynamically as time passes. Things in this world have several roles and facets generally, and
use them properly suitable for circumstances in which the things are. For example, a person
who works at a laboratory can enter into a university as a graduate student without quitting
his job. While in the university he is a student and has his student number and grades, in
the laboratory he has his employee number as an employee. Note that no one can make the
accurate forecast and, therefore, design all of such roles of the person when he comes into
the world. Since a person has generally a long life span, an object modeling the person in
programming languages should be persistent. Therefore, a persistent programming language
should have some capabilities to model and expressing such facets.

An object-oriented persistent programming language called INADA [AA93, TAM94,
ATBMO5] is designed for writing data-intensive applications, and it is now under devel-
opment. INADA is an extended C++; it borrows the object model of C4++ and extends it
to provide facilities for manipulating a large amount of persistent objects. In INADA, any
persistent object can get and lose any types, or classes in C++ terms. Such objects are
called multiple type objects. Multiple type objects can be implemented with no modification
of the type system of C+4 except for the runtime check whether a persistent object has
the type. In other words, the facility provided by the type system of C++ can be available
in INADA. This chapter describes the design of multiple type objects and shows that the

concept can be implemented in a very simple way.

3.2 Multiple Type Concept

This section clarifies the necessity of multiple type objects and describes the design policies

kept when introducing the concept into INADA.

3.2.1 Why Needed?

A persistent programming language allows users to manipulate persistent objects just like
volatile objects. Once a persistent object is created and stored on secondary storage, the
object may be used by the program which created it or by other programs, i.e., the persistent

object may be shared among several programs. In general, declared and manipulated objects

gooboobbbooooooao

3 Multiple Type Objects 37

in a program have different forms, or information, from those in another program. Let us
consider a case of modeling persons. When a person enters a university, the person becomes
a student. In the university one has one’s name, age, student id number, office room number,
and office phone number. At the same time one can work outside the university as a part-
time employee. In the environment one may have one’s name, age, department name one
belongs to, office phone number, and an amount of one’s pay (see Figure 3.1). Note that
although the name and age in both environments must be the same, the office phone numbers

are different. In addition, the person is naturally identical.

University Company
name name
age A\ [age

student id #
office room #
office phone #

department name
office phone #

pay

Figure 3.1: An example of a person

One solution is that a database designer designs structures of objects, which correspond
types in terms of programming languages, useful for all programs that will manipulate the
objects before creating a persistent object of the types. In other words, a persistent object
includes all information and a user projects it to certain form or type suitable for her/his
own application when accessing the object. For the values of some attributes which cannot
be decided or should not be set, users may use so-called null values or flags (see Figure 3.2).
For instance, consider the case that all persons are supposed to be modeled as persistent
objects of ‘University _Company’ and you must model a person who is a student but not
an employee at the time. The values of department name, office phone number and pay
attributes as an employee must be set to null.

The solution seems to work apart from the fact that the database designer must be well

aware of all programs. However, another problem arises in investigating the characteristics

gooboobbbooooooao

3 Multiple Type Objects

38

University Company
name name
age \ [age

student id #
office room #
office phone #

student id #
office room #
Univ_office phone #

department name
office phone #
pay

University Company

department name
Comp_office phone #

pay

Figure 3.2: One solution for expressing many roles

of real world entities to be modeled.

Let us consider the person example again. A person generally has a bright future. That
is to say no one can make the accurate forecast of the person’s future. In the case where
additional attributes are restricted to be used by a few objects in a large number of per-
sistent objects, the solution using null values or flags wastes a large amount of disk space.
In conclusion, the design of the structure for persistent objects should not be static but
augmentable. Therefore, some mechanisms are required to add characteristics to objects for
implementing incremental database designs and software modeling.

This is basically different from multiple inheritance. One can use the multiple inheritance
to model objects which have many types. The multiple inheritance, however, has problems,
e.g., a derived class must have all members of super classes. Furthermore, an object once

created cannot change its type throughout its life span. As a result, the cases where a person

gooboobbbooooooao

3 Multiple Type Objects 39

becomes a student and resigns his job cannot be modeled with the multiple inheritance.

3.2.2 Design Policies

On the basis of things described above, the following principles were kept when introducing

multiple type objects into INADA.

e Any persistent object can get and lose any types.
Any persistent object gets and loses any types dynamically. There might exist persis-

tent objects without any type in INADA.

e A persistent object has an OID (Object IDentifier).
One persistent object has only one OID, and not have several OIDs for maintain

multiple types of the object. The OID is used as an identifier and a reference.

o The type system of C++ should not be modified.
We do not intend to modify the type system of C++ for introducing the concept; the
type system can be employed just as it is and only the check whether a persistent

object has certain type is added.

¢ C++ codes are available also in INADA.
INADA allows the use of C4++ codes already existed without any modification.

3.2.3 Syntax and Semantics

Manipulation of volatile objects is definitely same as in C++4. A persistent object can be
manipulated through a persistent pointer (whose value is actually an OID for a persistent
object in INADA). A persistent pointer variable is declared just as a pointer variable in
C++ with the prefix keyword ‘persistent’. For example, if you want to declare a persistent
pointer variable ‘person’ which will refer a persistent object whose class (or type) is ‘Person’
(the way of class definitions is also same as in C++, and here assume the class has been

defined properly elsewhere), write

persistent Person * person;

gooboobbbooooooao

3 Multiple Type Objects 40

When creating a persistent object, you use the ‘new’ operator with an argument to
indicate where you want to allocate the new object. You can put a pointer variable which
refers to a set object or a persistent heap object as the argument. INADA introduces set
objects, which are instance objects of classes designed for collections of objects. A persistent
heap (PH) is a portion of the virtual address space and mapped onto files on secondary
storage under a memory mapped I/O environment [ATBM95], and used as a heap in C and
C++ for manipulating persistent objects dynamically. Since a PH is a collection of objects,
the PH is a set object. ‘new(set)’, where ‘set’ is a pointer to a set object, creates an object
in the set object as an element of the set object and returns its OID (see [AA93] for more
details). The following statement creates a ‘Person’ object in a persistent heap stood for by

‘pho’, and assigns its OID to the variable ‘person’.
person = new(pho)Person("Ari",27,....);

As far as creating persistent objects, the difference between INADA and C++ is that
INADA has the keyword ‘persistent’ for declarations of persistent pointer variables and
‘new’ operator takes an argument whenever creating persistent objects. The type system

used is that of C++ itself. For example,
person = new(pho)Part(...);

is detected as an error at compiling time because it attempts to create a ‘Part’ object
and assign its OID to ‘person’, which has been already declared as a variable pointing a

‘persistent Person’ object. Of course,
person -> Name();

is understood as a correct statement if ‘Person’ has the method ‘Name()’, and
person -> PartID();

is detected as an error, too, if ‘Person’ does not have ‘PartID()’, at compiling time by the

type system of C++.

gooboobbbooooooao

3 Multiple Type Objects 41

For the multiple type concept, ‘as’ and ‘transforms’ are introduced as programming
constructs into INADA. The ‘as’ construct is used to let the OID of a persistent object be

a specific type. Its syntax is:

0ID as TYPE

where ‘0ID’ means a persistent pointer variable, or ‘this’in class definition. The ‘transforms’

is used as a statement of the following form:

new(set)Type(arguments) transforms 0ID;

which is exploited in order to add ‘Type’ to the object referred to by the ‘0ID’ and to store
data into the ‘set’. Let us explain it using the example shown in Figure 3.3. Figure 3.4
illustrates correspondence between attributes of ‘CLASSI’ and ‘CLASSJ’ in similar manner to

Figure 3.1.

class CLASSI{
int a;
char b[10];
int c¢;
public:
CLASSI (int, char*, int);//constructor
int A() {return a;}
char* B() {return b;}
int C() {return c;}

class CLASSJ({
int a;
char d[15];
public:
CLASSJ (int, char*); //constructor
int A() {return a;}
char* D() {return 4d;}
int JA() {return this as CLASSI -> A();}
//A() in CLASSI is accessed with different name
char* B(){return this as CLASSI -> B();}
//B() in CLASSI is accessed with same name
//C() in CLASSI isn’t accessed through CLASSJ

Figure 3.3: Definitions of CLASSI and CLASSJ

In the code, the points should be noted are as follows.

gooboobbbooooooao

3 Multiple Type Objects 42

CLASSI CLASSJ

Figure 3.4: Dependency between CLASSI and CLASSJ

e The definition of ‘CLASSI’ is identical to that in C+4++, i.e., the definition is available
in C++ just as it is.

e ‘CLASSJ’ can have unique attributes including data and methods.

e Attributes in ‘CLASSI’ can be accessed through attributes in ‘CLASSJ’. The attributes

in ‘CLASSJ’ need not to have the same names of those in ‘CLASSI’.

e ‘CLASSJ’ need not to have all attributes in ‘CLASSI’. This is one of the different points

from the inheritance mechanism.

A persistent object of ‘CLASSI’ in Figure 3.3 can be created as follows:

persistent CLASSI * pi = new(pho)CLASSI(1,"fuk",4);

To add the type ‘CLASSJ’ to the object, write

persistent CLASSJ * pj;
pj=new(pho)CLASSJ (1000, "kyu") transforms pi;
or

pi as CLASSJ=new(pho)CLASSJ(1000,"kyu");

The difference between the two styles is that the variable ‘pj’ is made in the former style,

while no variable for the addition is made in the latter. Note that the values ‘pj’ made in the

gooboobbbooooooao

3 Multiple Type Objects 43

former and ‘pi’ are the same in INADA, since both are pointing to an identical persistent

object.
// correct statements
pi > AQ; // 1 --——-(1)
pj -> DO; // "kyu" ---=(2)
pj -> AQ; // 1000 -——-(3)
pi as CLASSJ -> D(); // "kyu" ----(4)

// wrong statements

// (detected at compiling time)

pi -> DO; ---=(5)
pj as CLASSI -> D(); ----(6)

Statement (1) sends the method ‘A()’ to the object which is pointed to by ‘pi’ that is
declared as the type ‘persistent CLASSI *’. Statement (5) can be detected as an error at
compiling time as same as in C++ because (5) is going to send ‘D()’ to the object whose
type can be decided as ‘CLASSI’ by the declaration, ‘persistent CLASSI * pi’. As shown
in Figure 3.3, the two ‘A()’s in ‘CLASSI’ and in ‘CLASSJ’ are different, and (1) and (3) may
return different results. In the example, (1) returns 1 and (3) returns 1000. Statement (4)
is a correct code in INADA. It sends ‘D()’ to the object pointed to by ‘pi’ as a ‘CLASSJ’
object. However, statement (6) is a wrong statement, since ‘CLASSI’ does not have the
method ‘D()’. Note that the statements (5) and (6) can be decided as wrong statements
when a user compiles programs including them, and the detection is done by the type system
of C++.

When a persistent object is accessed through types which the object does not have, for

example,
persistent CLASSI * pi = new(pho)CLASSI(1,"fuk",4); ----(1)
pi as CLASSJ -> D(); ----(2)

the evaluation is failed at runtime of the program just because the object pointed to by ‘pi’
does not have such a type and the absence of the type cannot be detected until the program
runs.

In the example described above, a persistent object of ‘CLASSJ’ is made after the creation
of a ‘CLASSI’ object. However, in general, the order of object creation does not have any
relation of dependency between classes. For example, with using the two classes, users can

create a ‘CLASSJ’ object and then add ‘CLASSI’ to the object:

gooboobbbooooooao

3 Multiple Type Objects 44

persistent CLASSJ * pj
persistent CLASSI * pi

new (pho) CLASSJ (1000, "kyu") ; -——(1)
new(pho) CLASSI(1,"fuk",4) transforms pj; ----(2)

In this case, however, runtime failures may be occurred if there are some statement(s) using
the object created in statement (1) before the evaluation of statement (2). One is that, for
example, ‘pj -> B();’ is a correct statement in INADA, but the method evaluation is failed
because the object has no information defined in ‘CLASSI’ at the moment. This is just like
as what happened when heap objects are accessed before they are initialized in C++. The
other is the same one mentioned before.

In the example using ‘CLASSI’ and ‘CLASSJ’, ‘CLASSJ’ depends on ‘CLASSI’. Multiple type
objects may have types which do not have any dependency among each other. For example,
for adding type ‘CLASSK’ shown below to a persistent object which has ‘CLASSI’ and pointed
to by ‘pi’,

class CLASSK{
int a;

public:
CLASSK(int);
int AQ);

2

a programmer can write
persistent CLASSK * pk = new(pho)CLASSK(4) transforms pi;

Besides, there may be mutual dependencies among classes in INADA. For instance,

‘CLASSI’ in Figure 3.3 can have a method to access attributes in ‘CLASSJ’ as follows:

class CLASSI{
// data members are the same in Figure 3.3
public:
CLASSI(int, char*, int); // constructor
int A(){ return a; }
char* B(){ return b; }
int C(){ return c; }
) char* D(){return this as CLASSJ -> D();}

Consequently, programmers can design classes independently if the classes have no depen-
dency among them and also can integrate all persistent objects already stored in secondary

storage independently into one schema using the multiple type concept.

gooboobbbooooooao

3 Multiple Type Objects 45

Inheritance mechanism provided by C++ is also available for the concept. For example,

class CLASSL : CLASSJ{
int aa;

public:
CLASSL(int ja, char* jd, int la): CLASSJ(ja,jd){aa=la;}
int AAQ){return aa;}

2

is a completely valid class definition in INADA.
To delete persistent objects, all users have to do is to use ‘delete’ operator as they do

when deleting heap objects in C++. For instance,
delete pi;

deletes the persistent object pointed to by ‘pi’. If the object has many types, all information
for the types are deleted. Similarly, the ‘delete’ is used when deleting certain type from

persistent objects:
delete CLASSI of pi;

removes the type ‘CLASSI’ from the object without deleting the object itself. If the object
pointed to by ‘pi’ does not have such type, a runtime failure will occur because of the same
reason described before.

In addition, persistent objects with no type can exist in INADA. Thus users can express
the existence of objects whose characteristics are not so clear at the point with the no type

objects.

3.3 Implementation Details

This section gives implementation details of multiple type objects in persistent programming
languages, in particular, matters related to the multiple type concept and shows the key idea
for implementation of multiple type objects of a prototype system of INADA. INADA itself
consists of a translator, a class library and runtime routines. The translator translates

INADA programs into C++ codes, which in turn are compiled by a C++ compiler.

gooboobbbooooooao

3 Multiple Type Objects 46

3.3.1 Persistent Heaps and Pointers

In INADA, persistent objects are implemented with “persistent heaps”. The term “heap” is
employed because the space looks from users just like the heap in C and C++ programming
languages where data are dynamically allocated and deleted by the user’s programs. A
persistent heap (PH) is a part of virtual address space of processes and is mapped to a
file on secondary storage of local or remote sites. This is implemented with WAKASHI
[BM94], a distributed paged-object server, which is based on the memory mapped file I/O
mechanism supported in operating systems such as SunOS and Mach. A persistent heap

basically consists of three parts depicted in Figure 3.5.

Object name table(ONT)

Object reference table(ORT)

Object space(OS)

Figure 3.5: A physical segment layout of a PH

Object name table (ONT) binds names and persistent objects allocated in it. The names
must be unique in a PH. All objects in it need not to be named. Object reference table
(ORT) is a hash table! which is described in detail later on. The remaining space of a PH
(OS: Object Space) is used for allocating and storing persistent objects. ORT and OS can
be extended in the current prototype system of INADA.

As described before, persistent objects are manipulated through their persistent pointers.
There have been many discussions concerning pointer swizzling and several methods for that
were proposed [Moss92, Wil90, WD92| and many object-oriented database programming

languages support some kinds of methods for swizzling [LLOW91, AB87|. However, a non-

!The hash mechanism in INADA is not mentioned in this chapter because this is not very significant to

the implementation of multiple type objects

gooboobbbooooooao

3 Multiple Type Objects 47

swizzling approach for dereferencing persistent pointers is adopted instead of a swizzling

technique in INADA. This design decision mostly depends on the observations:

i) The performance of runtime pointer conversion depends on the scheme for storage

management, the structure of persistent pointer, and the conversion mechanism.

ii) The runtime conversion based on the memory mapped file I/O approach shows compar-

atively low overhead, when using a simplified structure of persistent pointers [ATBM95].

iii) There is flexibility benefiting us to be able to implement many functionalities such
as multiple type objects and garbage collection in a PH easily in the non-swizzling

approach.?

A persistent pointer consists of two fields (see Figure 3.6). The first 1 byte represents
ph_id which indicates the identifier of the PH in which the persistent object referred to by
the pointer is allocated. The rest 3-byte stores ort_id from which the entry of the ORT for

the object pointed to by the persistent pointer can be calculated with a hashing mechanism.

ph_id ort_id

8 24 bits

Figure 3.6: A persistent pointer format

A persistent pointer consumes 4-byte long, which has the same size as that of a pointer
variable in C+4+ in the environment of 32-bit virtual address space. This assures size com-
patibility of volatile objects and persistent objects that are structurally identical except for
pointer types. This limitation seems to be a bit severe, but it will be loosened in the near

future when 64-bit address computers are widely used.

2In fact, instead of supporting automatic swizzling, INADA provides programmers with operations to
convert persistent pointers to C++ pointers (i.e., virtual addresses) and vice versa for improving performance

of their programs. This is described in [TAM94].

gooboobbbooooooao

3 Multiple Type Objects 48

3.3.2 Strategy

Before introducing the functionality of multiple type objects, the most significant data held
in ORT was only the offset address of the object from the top of the PH. For implementing
multiple type objects, an entry in the ORT is extended for holding the offset address, the
TypelD, the OID, and the NextID (Figure 3.7 (a)), and each size of them is 4-byte in the
current system. The TypelD table (Figure 3.7 (b)) is also needed when translating from

INADA codes into C++. The table is unique in a database and stored in secondary storage.

0| CLASSI
1| CLASSJ

TypelD| OID |NextlD

(a) An entry of ORT (b) TypelD table

Figure 3.7: ORT entry and TypelD table

Algorithms for creating, adding a type to, manipulating, removing a type from, and

deleting a persistent object are as follows.
Algorithm 1 Create

i) Find a statement persistent class-name* var-name, check the TypelD table whether
‘class-name’ has been registered or not. If not registered, register the class. Get the

TypelD for the ‘class-name’.

ii) Find an entry in the ORT on the PH specified as the argument of ‘new()’ for the new

object.

iii) Allocate space in its object space, and assign the offset value from the top of the PH,
the TypelD, and the OID to the entry correctly. The value of the OID refers to the

entry. The NextID of the entry is set to null.

gooboobbbooooooao

3 Multiple Type Objects 49

Algorithm 2 Add a type

i) Check the TypelD table whether ‘class-name’ has been registered or not. If not

registered, register the class. Get the TypelD for the ‘class-name’.

ii) Find the entry in which the value of NextID is null with following NextID chain from
the OID which points to the object that is going to be added the type.

iii) Find an entry in ORT on the PH specified as the argument of ‘new()’ for the type.

iv) Allocate space in its OS, and assign the offset value, the TypelD, and the OID to the
entry correctly. The NextID of the entry is set to null. And set the NextID found in

ii) as points to the entry in ORT found in iii).

Algorithm 3 Manipulate an object through a persistent pointer

i) Get the TypelD of the type through which the object is going to be manipulated from
the TypelD table. The type is the specified one when users use the ‘as’ construct, or

the default one specified at the declaration of the persistent pointer variable.

ii) Find the entry in ORT which has the TypelD in the NextID chain. If it is not found,
terminate because the object does not have the type, and this means a runtime error.

If found, return the virtual address.

Algorithm 4 Remove a type

i) Find the entry whose TypelD stands for the type in the NextID chain. If it is not

found, terminate because the object does not have such type.
ii) Release the space pointed to by the offset value.
iii) Remove the entry from the NextID chain properly.

iv) Be invalid the entry for recycling.

Algorithm 5 Delete

gooboobbbooooooao

3 Multiple Type Objects 50

i) As following the Next ID chain, release all spaces pointed to by offset values.

ii) As following the Next ID chain, be invalid all entries for recycling.

Algorithms 1 through 5 implement the multiple type concept except for the ‘this as
TYPE’ construct, which may be appeared in class definition (for instance, see Figure 3.3).
Since ‘this’ is the same as that of C++, i.e., ‘this’ is not a persistent pointer but a virtual

address, Algorithm 3 cannot be applied. Hence, we need the following algorithm.

Algorithm 6 A statement ‘this as TYPE’

i) After a statement ‘this as TYPE’ is found, find the ORT entry which pointing the
space for the object, whose type is the class where ‘this’ is appeared, by calculating

from its virtual address (‘this’).

ii) Get OID from the OID field in the ORT entry.

iii) Do Algorithm 3.

Figure 3.8 illustrates what is going on when creating a persistent object whose type is
‘CLASSI’ and adding ‘CLASSJ’ to the object (in the figure, ONT is ignored for simplicity).

In the TypelD table, the TypelDs of ‘CLASSI’ and ‘CLASSJ’ are 0 and 1, respectively
(Figure 3.8 (a)). Figure 3.8 (b) shows the status of the PH where a persistent object whose
type is ‘CLASSI’ is created and (c) shows where ‘CLASSJ’ is added to the object.

3.4 Related Work

The system adapting the most similar implementation of persistent objects to INADA is
probably ObjectStore [LLOWY1]. It is based on the memory mapped file I/O architec-
ture, too. While ObjectStore supports a swizzling technique for dereferencing persistent
pointers, INADA employs a non-swizzling technique and prepare operations for improving
performance. The flexibility of the non-swizzling technique brings about a very simple im-
plementation of multiple type objects. ObjectStore does not support such the functionality

at all.

gooboobbbooooooao

3 Multiple Type Objects 51

0| CLASSI
1| CLASSJ
2 [CLASSK

(a) TypelD table
pi pi p)

& 2=

g Persistent Heap Persistent Heap
\

offset e e offset offset

1 |) |null .

CLASSJ

CLASSI CLASSI
Virtual Address Space Virtual Address Space
(b) Creating a persistent CLASSI object (c) Adding CLASSJ to the object

Figure 3.8: Creating an object and adding a type to the object

Iris [Fish+87] is the first system that allows an object to obtain and lose types dynam-
ically. However, name conflict occurs when an object belongs to many types and the types
have the method of identical name [RS91]. In contrast, there is no such problem in INADA,
since any persistent object is manipulated only through a persistent pointer, which is de-
clared with certain type, and INADA provides ‘0ID as TYPE’ construct when referring the
object through ‘TYPE’.

Aspect concept [RS91] is designed to extend objects to support multiple roles. In their
data model, type of an object is separated from its implementation. The implementation of

an object is practically similar to C++4 class definition. The type provides only interfaces

gooboobbbooooooao

3 Multiple Type Objects 52

for accessing the object. An aspect is defined to be an implementation of a type, say A, with
the base type, say B. Using this definition, an object, a, can be created for type A as an
aspect of the already created object, b, whose type is B.

Although a and b represent different aspects of the identical object (e.g., Employee and
Person), a and b have their own references. However, the value called OID is given to an
object so as to identity two different aspects.

The work described in this chapter was motivated by [RS91], and we tried to integrate
this mechanism into INADA without changing C++ object-oriented framework and its type
system. However, at least two problems were found when simulating the functions described

in [RS91].

i) The strategy of separating OID from reference is not compatible with volatile objects
in C++. The identifier of a C++ object is actually a pointer that is used as the

reference, too.

i) In the aspect mechanism, classes defined independently cannot serve as an aspect to

each other.

[AB+493] describes Fibonacci, a strongly typed object-oriented database programming
language with ability to model objects with roles. As noted in [RS91], [RS91] does not
support inheritance mechanism, but Fibonacci and INADA do. The key difference between
Fibonacci and INADA is that INADA is based on C++4, which has been already diffused
widely in a large number of users, while Fibonacci has their own data model. Therefore
programmers can use the ability to model multifaceted objects in INADA easily if they
have known about C++, whereas they have to learn a completely new data model from the

beginning to use Fibonacci.

3.5 Summary

This chapter described the design of multiple type objects in INADA, a new persistent pro-
gramming language under development at Kyushu University, Japan. Any persistent objects

in INADA may get and lose types dynamically. INADA is an enhanced C++ language. We

gooboobbbooooooao

3 Multiple Type Objects 53

have also shown the implementation of multiple type objects in a simple manner, and the
type checking which can be processed statically by the type system of C++.

There are a lot of merits by introducing multiple type objects that are not shown in this
chapter. One is that they are useful for views in object-oriented databases [AA93, AAM95].
Views can be defined as virtual set objects, and manipulation on the views are translated
into manipulation on sets of actual existing objects. This is discussed in detail in the next
chapter.

Some open problems are left. INADA will need more facilities concerning the multiple
type concept. One is that INADA should be able to handle semantic constraints among
types. For example, adding type ‘Part’ to a ‘Person’ object does not make sense in general
applications. Users might want to describe something like that objects whose type is ‘A’
cannot be added type ‘B’. The other is that an object cannot have a couple of same types in
the current system. For example, there can be a person who works two places in the world,
but INADA cannot implement the two jobs in one type because there cannot exist an object

having two identical types, say ‘Employee’.

gooboobbbooooooao

4 Object-Oriented Views 54

Chapter 4

Object-Oriented Views

Persistent objects may be shared among many application programs, but they may be han-
dled in different ways in each of the application programs; only needed attributes can be
selected from persistent objects and processed. View is the mechanism that allows users to
deal with data as they like. This chapter describes how to implement object-oriented views
in INADA. INADA has rich functions and high extensibility to provide facilities of processing
queries on sets of objects. In INADA, views are implemented as virtual sets of objects, and
manipulation on views are translated into manipulation on sets of actual existing objects.

The concept of virtual set attributes is also proposed in this chapter.

4.1 Introduction

View is an important mechanism in databases. Relational databases successfully provide
views to their users. In the last decade, view mechanisms for object-oriented database
management systems have been proposed [e.g.,AbB091,HeZd88 MaMe91,Rund92]. In these
studies, a view is defined as a virtual class. These approaches are based on the object model
in which a container of objects is a class, and hence a view must be defined on the whole
objects of a class.

In relational databases a view may be regarded as a virtual table, i.e., a table that does
not exist in its own right but looks to users as if it does. A view is defined on base table(s)
or other view(s). Note that a base table is not a template of tuples but a set of tuples, that

is, a container of tuples. Thus, we can create multiple sets of tuples on a single schema

gooboobbbooooooao

4 Object-Oriented Views 55

and use them independently to define different views in the relational model. This leads us
to the belief that object-oriented views should also be defined on sets of objects stored in
physical storage, and never on classes which specify properties and behaviors of those objects
as templates of objects belonging to the classes.

This chapter proposes a view mechanism in an object-oriented persistent programming
language INADA [AAM92, ATAM93, AAMO95]. INADA borrows and extends the object
model of C++ so that it provides facilities for handling a large amount of sharable persistent
objects and processing queries on collections of objects. In INADA, a class is a type definition
and not a collection of objects of the type: this is the same as C++.

To manipulate collections of objects, INADA provides set objects, which have a special
interface defined by the system. A set object is a container of objects in the object model
of INADA. Throughout this chapter the term ‘set’ is used for representing a collection of
objects, that is, representing either a set in mathematical sense or a multi-set [Knu69].

Any persistent object in INADA may have multiple types as described in the previous
chapter. Any type can be attached to and deleted from a persistent object. In the object
model of INADA a user can create and delete views by applying this mechanism to set

objects.

4.2 Set Objects

In the case where we have to manipulate a large amount of persistent objects, it is very
important to retrieve only the objects satisfying certain conditions from the set of persistent
objects. To this end, we need set functionality of retrieving certain objects. Generally
speaking, we cannot define and implement a set which make it possible to provide efficient
functionality for all kinds of applications. Therefore, INADA does not provide system-defined
sets but define interfaces as standard which a set object must possess for the functionality.
Such classes that have the interfaces are called as set classes in the language.

This section explains only a part of the interfaces, which are the most basic ones, so that

the readers can easily follow the rest of this chapter.

e Iterator* OpenScan(Iterator* i)

gooboobbbooooooao

4 Object-Oriented Views 56

The method opens a new iterator for a set object and returns the reference to it. i
indicates where a user intends to open the iterator, whose default value is null. In the
case where 1 is null, the iterator referring to the top of a set object is returned. If the

set has no element, null is returned.

o Type* GetElement(Iterator* i)
The method returns a pointer to the element referred to by the iterator, which is

referred to by i. The name of members’ type should be written on the place of ‘Type’.

o Iterator* Next(Iterator* i)
The method makes the iterator referred to by i point to the next member and returns

the reference to the iterator.

e void CloseScan(Iterator* i)

The iterator referred to by ‘i’ is closed by this method.

In the above description, Iterator and Type stand for the type of iterator of the set
class and the type of element of the set class, respectively.

INADA provides ‘for all’ syntax as an extended ‘for’ statement in C++ for iteration
over a set object. This syntax allows users to write a program where they can apply ma-
nipulation only on objects which satisfy certain condition(s). Suppose domain is a pointer

referring a set object in which the type of elements is Type,

for all Type x in domain
such that condition

do manipulation

means that the element x in the set referred to by domain satisfies condition and manipulation
is applied on only such x. The above expression would be translated into C++ statements

which use the interfaces mentioned above.

gooboobbbooooooao

4 Object-Oriented Views 57

Als[c ' A1 C .

r==--r----
al | bl | c2 Lal ez,
2 | b2 | 24 !

Projectjgn view

Figure 4.1: A view as a virtual table

4.3 Views and Their Implementation

Relational databases provide set-oriented manipulation and query languages on a large
amount of data. Several researchers have tried to integrate such kind of facilities into object-
oriented systems [AIM+90, Deu+90, Fish+87, KG+90]. Also, there are several discussions
regarding views in object-oriented databases [AB87, MM91, Rund92, SLT91, TYI88]. How-
ever, none of them can implement the function of views completely.

There are mainly two types of view implementations in relational databases, i.e., views
exist as real relations and as virtual ones. In the former, update on base relations which
include real data is not reflected automatically on the views; therefore, we must have some
mechanism for propagating the update to the views. On the other hand, in the second
case, updates on base relations are automatically reflected to the views when we access the
views (Figure 4.1). We can implement this by means of translating queries on the views into
queries on the base relations.

Object-oriented database researchers attempted to integrate view facilities as virtual
classes [SLT91, Rund92]. But, if a class is a container of the class’s objects, this attempt
is unlikely to succeed. Because there is only one class hierarchy and must not be more
than one in their object models, the virtual classes, which construct views actually, must
be built in the class hierarchy (see Figure 4.2). The inheritance of attributes in an object-
oriented database is determined as the class hierarchy. Thus, it is a big problem how to put
the virtual classes, which are defined by queries, to proper position in the class hierarchy

already existed.

gooboobbbooooooao

4 Object-Oriented Views 58

/ /‘ N\
: N

/ TTTTTREEE N
/ . ProEmployee| \
/ TGP \
! \
/ \
Employee '

[

<«— : Inheritance

Figure 4.2: Reconstruction of a class hierarchy

Incidentally, INADA is an enhanced C++; there can be more than one class hierarchy,
i.e., we do not have to care the number of class hierarchies (see Figure 4.3). Also, classes are
not containers of objects. Instead, INADA has set objects which actually become containers
of objects. Since set objects do not have any relations to class hierarchy, the problem does
not arise.

We have the following two issues: how to define views and how to implement the views
by means of INADA'’s facilities. Set objects are created from classes which are defined by
users, and ‘for all’ statement which is used to manipulate elements of set objects is a quite
primitive function. Thus, a concrete solution for the issues is proposed in this chapter.

This section employs several concrete examples regarding views, how to define them in
INADA, and how to implement them in INADA.

As mentioned earlier, views can be implemented as virtual sets which are calculated and
realized when treating the views. Although we must calculate whenever a view is used,
update on data which are really stored and existed is reflected to the view automatically

in the approach. Therefore, this approach was adopted for integrating the view mechanism

into INADA.

gooboobbbooooooao

4 Object-Oriented Views 59

<—— : Instance

<4— : TInheritance

Figure 4.3: Class hierarchies in the data model of C++

INADA provides the following expression in order to define views.

view ViewSet on BaseSet{
a;, for a;;
a;, for a;,;

a;, for a;,;

where
condition

+s

where a;,(I = 1,2,---,k) stands for an attribute of views and a;, (I = 1,2,---,k) means
an attribute of base objects. The keyword view reveals that this is a view definition like
as the keyword class in C++ and that the following description defines a class. a;, for
aj,({ =1,2,---,k) means “the view has the attribute a;,, which corresponds to the attribute

a5

in a base object.” Both a;, and a;,(I =1,2,---,k) can be member variables and methods
in a base object, but a; (I =1,2,---, k) must be public.

This section discusses views like those which are defined with selection and projection in
relational databases (hereafter, the two types of views are referred to as selection views and

projection views, respectively). For implementing the selection and projection views, you

have to take the following steps.

gooboobbbooooooao

4 Object-Oriented Views 60

i)

ii)

iii)

iv)

For projection views, you define first the C4++ class View, which has attributes a;,,

a;,, '+, a;,. Instance objects of this class are elements of instance objects of the
class ViewSet defined in ii), and exist virtually. Instance objects of ViewSet construct
a view of instance objects of BaseSet class, which is supposed to be defined already

elsewhere.

You define class ViewSet in INADA. The class is like that the type of its instance
objects is Base in the case of selection views, or is View in the case of projection views.
Base class is supposed to be defined already elsewhere. In a method of ViewSet class
the corresponding methods to those of BaseSet class are evaluated by means of the
syntax ‘0ID as Type.” An interface in ViewSet as a selection view includes selection

predicate(s) which appear in the condition part.

You create an object of ViewSet class as an object of another class (or type) of a base
object of BaseSet class. In other words, you create a multiple type object by adding
type ViewSet to an object of BaseSet type. This multiple type object is a view of the

base set object.

A ‘“for all’ statement which accesses the view is translated into a ‘for all’ statement
accessing the base set object. This can be done automatically, since both BaseSet and

ViewSet have the same interfaces which set classes must have in INADA.

What users have to do with this approach to views is to create a set object as a view

of a base set and to delete it when it is no longer needed after manipulating it. Although

the class of elements of a view set is defined in i), any object for this class is not actually

created; therefore, there is no overhead regarding it. Let us consider the following example.

Example 1 Suppose that you must model the employees in a company. You model each

employee using Employee class which has attributes of name, age, department number, and

pay.

And suppose that the set object, which is referred to by eset pointer variable, holds

many objects of the class Employee.

Figure 4.4 shows a sample code for this example (for the sake of simplicity, detailed

codes of methods and so forth are omitted). Set is implemented as a template class. In the

gooboobbbooooooao

4 Object-Oriented Views 61

constructor of Employee default values are set in all member variables, i.e., the default values
are used if users do not put the value(s) when creating an object. Change Dept () method is
an update method to change an employee’s department. In Figure 4.4 five persistent objects
of Employee are created as elements of a set object of Set<Employee>. The persistent heap
referred to by pho is mapped on EmpFile file. Figure 4.5 shows this conceptually.

The rest of this section presents some concrete views on the set in Example 1.

View 1 A view which allows users to get names, ages, and departments, and cannot retrieve

pays from a set of employees. (A projection view)

For implementing this view, users can define Proview, for example, as follows:

view Proview on Set<Employee>{

char* Name() for Name();
int AGE() for Age();

int DeptNo() for DeptNo();

I
where char* Name() for Name() means “the view has the method named Name (), which
returns a value whose type is char*, and the method corresponds to the Name() in its
base set.” It is interesting to note that names of methods in a view need not to have the
same names as the methods in its base class (int AGE() for Age() in the example is an
example).

Figure 4.6 shows the code translated from the view definition. As the figure shows, the
data of pays cannot be accessed from the class Proview Employee. The class Proview whose

elements’ type is the Proview Employee is used to implement the view.

View 2 A view which has only employees whose pays are equal to or more than two thousand.

(A selection view)

This view Selview can, for example, be expressed as follows:

view Selview on Set<Employee>{

char* Name() for Name();
int Age() for Age();

int DeptNo() for DeptNo();
int Pay() for Pay();
where Pay() >= 2000;

gooboobbbooooooao

4 Object-Oriented Views 62

class Employee{

public:

char name[40];

int age;

int deptno;
private:

int pay;
public:

Employee(char* n="No-Name",int a=0,int d=-1,int p=-1)
{ strcpy(name, n);
age=a;
deptno=d;
pay = p;} // Constructor
“Employee(); // Destructor
char* Name(){ return name; }
int Age(){ return age; }
int DeptNo(){ return deptno; }
int Pay(){ return pay; }
Change_Dept(int d){ deptno=d; } // Update

};

template <class T>

class Set{

public:
Set(); // Constructor
T* GetElement(iterator<T>* i);
iterator<T>* Next(iterator<T>* 1i);
iterator<T>* OpenScan(iterator<T>* 1i);
void CloseScan(iterator<T>* 1);

+;

main(){
PHFT* phft = new PHFT();
PHO* pho = new PHO(phft, "EmpFile");
persistent Employee *emp;
persistent Set<Employee>* eset=new(pho)Set<Employee>();
emp=new(eset)Employee("Ari",26,4,1000);
emp=new (eset)Employee ("Kyu",50,2,3000);
emp=new(eset)Employee("Csc",34,4,1800);
emp=new (eset)Employee("Dat",28,1,1500);
emp=new (eset)Employee ("Kum",55,3,3800);

}

Figure 4.4: Class definitions of example 1 and creation of instance objects

In this view definition, you can see that all members of the base class are specified. This
means that an element of the view has the same members as those of the base class. In this
case, the interpreted class in C++ is the same as the base class, i.e., the interpreted class is

unnecessary. To avoid this, the following definition can be used:

gooboobbbooooooao

4 Object-Oriented Views 63

class Employee

char name[40];
int age;

int deptno;

int pay;

Employee(); ~Employee();
char* Name(); int Age();
int DeptNo(); int Pay();
Change_Dept();

Figure 4.5: A conceptual figure of example 1

view Selview on Set<Employee>{
where Pay() >= 2000;
s

As you see, INADA provides a view definition which has where clause and no member
definition. This view can be translated as Figure 4.7.

If a view definition has no members, INADA translates that with using the base element
class as it is. The set which is created from the translation returns only a set of elements
which satisfy the condition(s) specified. In Figure 4.7, the condition defined in the view

definition can be seen in the interface of the class Selview.

View 3 A view which returns names of employees each of whose age is equal to fifty or
more than that, and users cannot access the rest of members of class Employee. (A view by

combination of selection and projection)

gooboobbbooooooao

4 Object-Oriented Views 64

class Proview_Employee{
private:

char name[40];
int age;

int deptno;
int pay;

public:
char* Name(){return ((Employee*)this)->Name();}
int AGE(){return ((Employee*)this)->Age();}
int DeptNo(){return ((Employee*)this)->Deptno();}
s

class Proview{
public:
Proview(){}
Proview_Employee* GetElement(iterator<Proview_Employee>* 1i){

return (Proview_Employeex)
(this as Set<Employee>->GetElement((iterator<Employee>*)i));}
iterator<Proview_Employee>* Next(iterator<Proview_Employee>* 1i){
return (iterator<Proview_Employee>*)
(this as Set<Employee>->Next((iterator<Employee>*)i));}
iterator<Proview_Employee>* OpenScan(iterator<Proview_Employee>* 1i){
return (iterator<Proview_Employee>*)
(this as Set<Employee>->OpenScan((iterator<Employee>*)i);}
void CloseScan(iterator<Proview_Employee>* i){
this as Set<Employee>->CloseScan((iterator<Employee>*)i);}

Figure 4.6: A projection view

This view Combiview can be expressed in INADA as follows:

view Combiview on Set<Employee>{

char* Name() for Name();
where
Age() >= 50;

};

This definition has both its own members and where clause in which a condition is
specified. It should be noticed that this is a view combining both projection and selection
predicates. This is translated as shown in Figure 4.8. The class Combiview Employee has
only one public method named Name () due to the view definition. The condition Age () >=50

is built in the standard interface of the class Combiview.

gooboobbbooooooao

4 Object-Oriented Views 65

class Selview{
public:
Selview(){}
Employee* GetElement(iterator<Employee>* i){
return this as Set<emplyee>->GetElement(i);}
iterator<Employee>* Next(iterator<Employee>* 1i){
iterator<Employee>* tmp
=this as Set<Employee>->Next(i);
if (!tmp){
CloseScan(tmp);

return 0;}
if ((GetElement (tmp)->Pay())>=2000)
return tmp;

else tmp = Next(tmp);
return tmp;}

iterator<Employee>* OpenScan(iterator<Employee>* i){
iterator<Employee>* tmp

=this as Set<Employee>->OpenScan(i);
if (tmp) {
CloseScan(tmp);

return 0;%}
if ((GetElement (tmp)->Pay())>=2000)
return tmp;

tmp = Next (tmp);
return tmp;}

void CloseScan(iterator<Employee>* i){
this as Set<Employee>->CloseScan(i);}

Figure 4.7: A selection view

4.4 Experimental Results

The table 4.1 shows one of experimental results obtained by running the examples described
in the previous section on a Sun Sparc 2. In the experiment, 10000 objects were created and
managed with a simple linear list. The table shows the time required for displaying names
of employees who satisfy a condition. And the condition was changed to vary the amount of
the employees. The manipulation on projection views took more time than that on the base
set, since the projection views had a projection processing. Speaking of selection views, it
took more time to display than to evaluate a selection predicate. Therefore, the amount of

time required for processing selection views was less than that for processing the base set.

gooboobbbooooooao

4 Object-Oriented Views 66

class Combiview_Employee{
private:

char name[40];

char age;

char deptno

int pay;

public:
char* Name(){return ((Employee*)this)->Name();}

protected:
int Age(){return ((Employeex)this)->Age();}
friend class Combiview;

’

class Combiview{
public:
Combiview_Employee* GetElement(iterator<Combiview_Employee>* i){
return (Combiview_Employee*)
(this as Set<emplyee>->GetElement((iterator<Employee>*)i));}
iterator<Combiview_Employee>*
Next (iterator<Combiview_Employee>* i){
iterator<Employee>* tmp
=this as Set<Employee>->Next((iterator<Employee>*)i);
if ('tmp){
CloseScan((iterator<Combiview_Employee>*)tmp) ;
return 0;}
if ((GetElement ((iterator<Combiview_Employee>*)tmp)->Age())>=50)
return (iterator<Combiview_Employee>*)tmp
else tmp

=(iterator<Employee>*)Next ((iterator<Combiview_Employee>*)tmp);

return (iterator<Combiview_Employee>*)tmp;}
iterator<Combiview_Employee>*

OpenScan(iterator<Combiview_Employee>* 1i){
iterator<Employee>* tmp

=this as Set<Employee>->OpenScan((iterator<Employee>*)i);
if (1tmp){
CloseScan((iterator<Combiview_employee>*)i);

return 0;%}
if ((GetElement ((iterator<Combiview_Employee>*)tmp)->Age())>=50)

return (iterator<Combiview_Employee>*)tmp;
tmp=(iterator<Employee>*)Next ((iterator<Combiview_Employee>*)tmp) ;
return (iterator<Combiview_Employee>*)tmp;}
void CloseScan(iterator<Combiview_Employee>* i){
this as Set<Employee>->CloseScan((iterator<Employee>*)i);}

Figure 4.8: A combination view of projection and selection

4.5 Insertion and Deletion through Views

This section discusses insertion and deletion through views. Insertion and deletion in this

section stand for insertion of elements with new operator and deletion of them with delete,

gooboobbbooooooao

4 Object-Oriented Views 67

Table 4.1: Evaluation of projection and selection and their combination views (in seconds)

Selectivity | Base set | Projection view | Selection view | Combination view

0% 1.94 2.15 0.54 0.56

20% 1.95 2.24 0.66 0.67

40% 1.95 2.24 1.04 1.06

60% 1.97 2.24 1.45 1.46

80% 1.95 2.23 1.85 1.87
100% 1.95 2.24 2.24 2.26

respectively.

Insertion of an element is carried out by creating an object of the class as the element of

a base set and inserting the object to the view. The following things have to be considered.

e In the selection views
Insertion of objects which do not satisfy condition(s) is not allowed. This can be imple-
mented by the system checking this when evaluating a sentence including constructor.

By this mechanism, insertion through views are stable.

e In the projection views
The system automatically complement the values which cannot be accessed through

the views by the default values defined in the definition of the constructor.

Deletion is the delete process of an element object from a base set. The followings, like

insertion, have to be considered.

o In the selection views
The objects which satisfy selection predicate(s) are deleted. This is obvious because
the OIDs processed by the operator delete are obtained through the views including

the selection predicate(s).

e In the projection views
The values of all members of an element which is going to be deleted are deleted

regardless that every member can be accessed through the views.

gooboobbbooooooao

4 Object-Oriented Views 68

class Proview_Employee{
private:

char name[40];
int age;

int deptno;
int pay;

public:
char* Name(){return ((Employee*)this)->Name();}
int AGE(){return ((Employee*)this)->Age();}
int DeptNo(){return ((Employee*)this)->Deptno();}
Change_Dept(int D){((Employee*)this)->Change_Dept(D);}
Proview_Employee(char* N, int A, int D)
{((Employee*)this)->Employee(N,A,D);}

Figure 4.9: A projection view with a method to update

Let us consider the following example, which obtained by modifying the View 1.

View 4 A view which has name, age, and department, and users cannot retrieve pay of an
employee (a projection view). Also, users can update department and insert an employee

through the view.

This can be defined as follows:

view Proview on Set<Employee>{
char* Name() for Name();

int AGE() for Age();

int DeptNo() for DeptNo();

Change_Dept(int D) for Change_Dept(D);

Proview(char* N, int A, int D) for Employee(N, A, D);

s
In this definition, you see the constructor for the insertion and the update method for

the update process through the view. The result of the translation from this definition by
the system is different from that part of the class Proview Employee. The translation of the
part is shown in Figure 4.9.

An update through the view is processed by an update to the base object. For example,

an insertion
new(peset)Proview("Mas",26,4) ;

gives the same result as given by evaluating the following statement:

gooboobbbooooooao

4 Object-Oriented Views 69

new(peset)Employee("Mas",26,4,-1);

4.6 Virtual Set Attributes

The previous sections have shown that selection and projection views can be implemented
as virtual sets by using the multiple type object mechanism on set objects. Each of them
is a view to one set object. This section discusses a virtual set based on more than one set
object.

Let us take a look at the following example.

Example 2 Suppose that you have to model the set of departments of a company. Fach
department holds department name, department number, and department manager as its
members, and s modeled by the class Dept. And, suppose that the set object, which is
referred to by dset pointer variable that is a persistent object of the class Set<Dept>, holds

a number of objects of the class Dept.

A simple code for this example is shown in Figure 4.10. Now let us consider combin-
ing the set object shown in Figure 4.10 and a set of Employee objects in order to obtain
employees belonging to certain department. Since users cannot express two members belong-
ing two types as one member of a type with the multiple type concept, this view cannot
be implemented by the approach taken to implement views created from selection and/or
projection predicates. This is because object-oriented concept does not allow to express the
relationships of two objects in an object, though the concept is useful to encapsulate data
and behaviors applicable to the data in an object. Thus, we must build relationship of two
or more objects into one object to manipulate the relationship.

To implement this, virtual set attributes are introduced. The virtual set attributes have
a virtual set object as their return values. When the attributes are evaluated, the values
become real. To implement the combination in the above example, a user code the virtual

set attribute Member () of the class ExtDept as follows:

class ExtDept{

public:
char* Name() for Dept::Name();
int DeptNo() for Dept::DeptlNo();
char* Mng() for Dept::Mng();

gooboobbbooooooao

4 Object-Oriented Views 70

class Dept{
char name[40];

int deptno;
char mng[40];
public:

Dept(); // Constructor

char* Name();
int DeptNo();

char* Mng();

+;

main(){
persistent Dépt *dpt;
persistent Set<Dept>* dset=new(pho)Set<Dept>();
dpt=new(dset)Dept("Design",4,"Ari");
dpt=new(dset)Dept("Sale",1,"Dat");

) :

Figure 4.10: Class definitions of example 2 and creation of instance objects

Set<Employee>* Member ()
where Employee: :DeptNo()
== Dept: :DeptNo();
¥
By adding this class to an object of the class Dept and accessing the object through

ExtDept, you can retrieve all employees belonging to certain department.

4.7 Summary

This chapter discussed how to consider views in object-oriented framework, and how to im-
plement object-oriented views in the persistent programming language INADA. The multiple
type concept is one of the functions which should be included in persistent programming
languages. Object-oriented views can be implemented easily by applying the concept to set
objects

INADA is an enhanced C++ programming language. Most of all functions in INADA
are affected by many other work, e.g., [AG89, Deu+90, AIM+90, LLOW91, RC89]. The
obvious different points between INADA and the other work are

i) INADA provides multiple type objects.

gooboobbbooooooao

4 Object-Oriented Views 71

ii) Views are implemented as virtual sets; a view is implemented as a type of a base set.

All other work [HZ88, Rund92, SLT91, TYI88] think that views in object-oriented database
systems are implemented as virtual classes made by some queries, because in their data
models only one class hierarchy can exist and a class is a container of objects. Thus, they
have to tackle on the problem that they build much complex class hierarchy over and over
again whenever creating a new view; therefore, in this sense, their approaches to implement
object-oriented views are not successful.

The new approach presented in this chapter is quite different from them. In INADA, a
class is not a container of objects, and views are implemented as virtual sets. Therefore,
a class hierarchy which is a database schema does not need to be rebuilt. In the approach
proposed in this chapter what you have to do to create a view is to add a type which is for
the view to a set object. When the view becomes no longer needed, you just delete the type
from the set object.

[SS89] tries to implement views by allowing an object to have several interfaces while
keeping its OID. However, [SS89] does not support the view mechanism that the relational
database model supports.

INADA thinks of treating with sets of objects, and implements views to the sets. Ma-
nipulation on views, or virtual sets, are translated into that on their base sets, as shown in
this chapter.

The examples of the translation shown in this chapter, however, use the most primitive
way. In INADA you can define and handle set objects implemented in various ways so as
to fix your application. Integration this flexibility into the translation must be consider as

future work.

gooboobbbooooooao

5 Conclusions 72

Chapter 5

Conclusions

In this dissertation design and implementation of the facilities that persistent programming
languages should possess have been studied. The issues described in this dissertation are
a part of results we have obtained during designing the persistent programming language
INADA and developing it practically on real systems.

We have studied mainly the following three topics concerning persistent programming

languages in this dissertation.

i) Persistence of objects

We investigated memory-mapped I/O environment as a platform on which we im-
plemented the persistent programming language INADA, and examined several im-
plementations of persistent pointers in the environment. The memory-mapped 1/0
enables us to implement persistent heaps which are portions of virtual address space
and correspond to files on secondary storage in the local site or remote sites. Because
a persistent heap is a contiguous address space, we can handle huge persistent objects
efficiently. The results we obtained from the examination disclose that non-swizzling
pointer techniques are not so inefficient to discard the techniques when comparing
with swizzling pointer techniques. In addition, non-swizzling pointer techniques have
an advantage over swizzling pointer ones in that they provide flexibilities allowing us
to build useful functions. As a result, we adopted a non-swizzling pointer technique to

implement persistent pointers in INADA.

gooboobbbooooooao

5 Conclusions 73

ii) Ability to change characteristics of objects

We proposed the framework in which a persistent object can get and /or lose its type(s)
dynamically, and called such objects multiple type objects. Since persistent objects
are shared by many applications, we need the mechanism to change forms of persistent
objects suitable for each applications. In addition, we can model changes of objects as
time goes on with multiple type objects. This is significant because persistent objects
have so long life spans that requirement for applications manipulating the objects
might change. We also proposed an implementation of this mechanism, and built it

into INADA.

iii) Views in object-oriented systems

We discussed object-oriented views, and proposed a new implementation of views in
object-oriented systems. Little work, to our knowledge, have succeeded so far to im-
plement this mechanism. In INADA, a view is implemented by adding a type to a set

object. Also, we designed definition constructs for views in the language.

There are still issues to investigate regarding the above three topics. Future work includes

the followings.

e Optimization of treating persistent pointers

We adapted the ORT approach to implement persistent pointers in INADA. We have
to improve its performance. An ideais, as you can see in [INADA], to assign the virtual
address calculated from a persistent pointer into a pointer variable when referring the
persistent object referred to by the persistent pointer. If we can change statements
like this when translating a program in INADA into C++, the performance would be

improved.

e Integrating inheritance into multiple type object mechanism

When accessing a multiple type object by certain type we adapted type name matching
algorithm. In this implementation, however, inheritance relations between classes are

ignored. In future, we need to integrate these two mechanisms.

gooboobbbooooooao

5 Conclusions 74

e Optimization of looking up certain type from a multiple type object

We proposed an implementation of multiple type objects in this dissertation. A linear
link is used in the implementation; therefore, it might take long time to look up certain
type from a multiple type object in some cases. We would have to improve holding

multiple types and make up some better ways to retrieve certain types.

e Developing more user-friendly view definition languages

The view definition proposed in this dissertation might not be easy-to-use enough
because the definition is based on the programming language INADA. As a matter
of fact the definition way is the most primitive programming construct. To make
INADA a more user-friendly language, easy-to-use descriptions as syntax sugars must

be needed.

e Improving of view processing

There are several ways to implement set objects, and users can adapt their own imple-
mentations of set objects so as to fix their applications in INADA. Thus there must be
several processes of views by using proper sets so as to get better performance. Also,
we would be able to improve performance with rewriting view definitions, particularly

in the case of combinations of selection and projection views.

gooboobbbooooooao

Bibliography 75

Bibliography

[AA93] M. Aritsugi and H. Amano : “Views in an Object-Oriented Persistent Programming
Language,” Proc. of the International Symposium on Next Generation Database
Systems and Their Applications, Fukuoka, Japan, pp.18-25, Sep. 1993.

[AABJMT94| H. Amano, M. Aritsugi, et al. : “Shusse Uo: a Persistent Project of Developing
an Flexible Platform for Advanced Database Systems and Applications,” Tech. Rep.
of IEICE, Mar. 1994, DE93-62.

[AAM92] M. Aritsugi, H. Amano, and A. Makinouchi : “Multitype Objects in Persistent
Programming Language INADA,” Proc. of Advanced Database System Symposium,
Tokyo, Japan, pp.93-100, Dec. 1992 [in Japanese].

[AAM95] M. Aritsugi, H. Amano, and A. Makinouchi : “Implementation of Views in the
Persistent Programming Language INADA,” Trans. of the Information Processing

Society of Japan, 36(4), pp.971-980, Apr. 1995 [in Japanese].

[AB87] M.P. Atkinson and O.P. Buneman : “Types and Persistence in Database Program-
ming Languages,” ACM Computing Surveys, 19(2), pp.105-190, Jun. 1987.

[AB+90] T.L. Anderson, A.J. Berre, et al.: “The HyperModel Benchmark,” EDBT, pp.317-
331, 1990.

[AB91] A. Abiteboul, and A. Bonner : “Objects and Views,” Proc. the 1991 ACM SIGMOD
Int’l Conf. on Management of Data, pp.238-247, May 1991.

[AB+93] A. Albano, R. Bergamini, et al. : “An Object Data Model with Roles,” Proc. of
the 19th International Conference on VLDB, pp.39-51, Aug. 1993.

[ABD+89] M. Atkinson, F. Bancilhon, D. DeWitt, et al. : “The Object-Oriented Database
System Manifesto,” The First Int’l Conf. on DOOD, kyoto, Japan, pp.40-57, 1989.

[AG89] R. Agrawal and N.H. Gehani : “ODE (Object Database and Environment): The
Language and the Data Model,” Proc. of ACM SIGMOD Conference on Manage-
ment of Data, pp.36-45, May 1989.

[AIM+90] M. Aoshima, Y. Izumida, A. Makinouchi, F. Suzuki, and Y. Yamane : “The
C-based Database Programming Language Jasmine/C,” Proc. 16th VLDB Conf.,
pp.539-551, Aug. 1990.

gooboobbbooooooao

Bibliography 76

[AM95] Aritsugi, M. and Makinouchi, A. : “Design and Implementation of Multiple Type
Objects in a Persistent Programming Language,” IEEE 19th Annual International
Computer Software and Applications Conference (COMPSAC ’95), pp.70-76, Aug.
1995.

[ATAM93] M. Aritsugi, K. Teramoto, H. Amano, and A. Makinouchi : “Multiple Type
Objects and Set Objectsin an Object-Oriented Persistent Programming Language,”
Technical Report CSCE-93-C02, Dept. of Comp. Sci. and Comm. Eng., Kyushu
University, Mar. 1993.

[ATBM95] M. Aritsugi, K. Teramoto, G. Bai, and A. Makinouchi : “Several Implemen-
tations of Persistent Pointers in a Memory-Mapped 1/O Environment,” Proc. 6th
International Conference on Database and FExpert Systems Applications (DEXA
’95), Lecture Notes in Computer Science 978, pp.490-501, Sep. 1995.

[Bar+] R.V. Baron, et al. : MACH Kernel Interface Manual, 25 Oct. 1988.

[BM94] G. Bai and A. Makinouchi: “ WAKASHI/D: A Distributed Storage Server for New
Generation Database Systems,” Proc. of the International Symposium on Advanced
Database Technologies and Their Integration, pp.137-144, Oct. 1994.

[CDN94] M.J. Carey, D.J. DeWitt, and J.F. Naughton : “The OO7 Benchmark,” CS Tech.
Rep. Univ. of Wisconsin-Madison, 1994.

[Codd70] E.F. Codd : “A Relational Model of Data for Large Shared Data Banks,” Com-
munications of the ACM, 13(6), pp.377-387, 1970.

[CS91] R.G.G Cattell and J. Skeen : “Object Operations Benchmark,” ACM Trans. on
DS 17(1), pp.1-31, 1992.

[Deu+90] O. Deux, et al. : “The Story of 02,” IEEE Trans. on Knowledge and Data Engi-
neering, 2(1), pp.91-108, Mar. 1990.

[DMFV90] D.J. DeWitt, D. Maier, P. Futtersack, and F. Velez : “A Study of Three Alter-
native Workstation Server-Architectures for Object Oriented Database Systems,”
VLDB, pp.107-121, 1990.

[ERDB90] The Committee for Advanced Database Function : “Third-Generation Database
System Manifesto,” SIGMOD RECORD, 19(3), pp.31-33, Sep. 1990.

[ES91] M.A. Ellis, B. Stroustrup : The Annotated C++ Reference Manual, Addison-
Wesley, 1991.

[Fish+87] D.H. Fishman, et al. : “Iris: An Object-Oriented Database Management System,”
ACM Trans. on Office Information Systems, 5(1), pp.48-69, Jan. 1987.

[HZ88] S. Heiler, and S. Zdonik : “Views, Data Abstraction, and Inheritance in the FUGUE
Data Model,” Proc. the 2nd Int’l Workshop on Object-Oriented Database Systems,
Lecture Notes in Computer Science 334, pp.225-241, Sep. 1988.

gooboobbbooooooao

Bibliography 77

[INADA] INADA User Guide, Release 1.0, Dept. of computer Science and Communication
Eng., Kyushu University, 1994 [in Japanese].

[KG+90] W. Kim, J.F. Garza, et al. : “Architecture of the ORION Next-Generation Database
System,” IEEE Tran. on Knowledge and Data Eng., 2(1), pp.109-124, Mar. 1990.

[KK93] A. Kemper, and D. Kossmann : “Adaptable Pointer Swizzling Strategies in Object
Bases,” ICDE, pp.155-162, 1993.

[Knu69] Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1969.

[LLOWO1] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb : “The ObjectStore Database
System,” COMM. of the ACM, 34(10), pp.51-63, Oct. 1991.

[Maki90] A. Makinouchi : “Architectures of the Object-Oriented Database Management
Systems,” Information Processing 32(5) pp.514-522, 1991 [in Japanese].

[MM91] J.-C. Mamou and C.B. Medeiros : “Interactive Manipulation of Object-oriented
Views,” Proc. the 7th Int’l Conf. on Data Engineering, Kobe, Japan, pp.60-69,
Apr. 1991.

[Moss92| J. Eliot B. Moss : “Working with Persistent Objects: To Swizzle or Not to Swizzle,”
IEEE Trans. on Software Engineering, 18(8), pp.657-673, Aug. 1992.

[Obj91] Object Design, Inc. : “ObjectStore User Guide,” Release 1.1, Mar. 1991.

[Ont94] Ontologic Inc. : Ontos Object Database Version 3.0 Developer’s Guide, Ontologic
Inc., Burling Mass, 1994.

[RC89] J.E. Richardson and M.J. Carey : “Persistence in the E Language: Issues and Im-
plementation,” Software-Practice and Experience, 19(12), pp.1115-1150, Dec. 1989.

[RS91] J. Richardson and P. Schwarz : “Aspects: Extending Objects to Support Multiple,
Independent Roles,” Proc. of ACM SIGMOD Conference on Management of Data,
pp-298-307, May 1991.

[Rund92] Rundensteiner, E. A. : “MultiView: A Methodology for Supporting Multiple
Views in Object-Oriented Databases,” Proc. the 18th VLDB Conf., Vancouver,
British Columbia, Canada, pp.187-198, 1992.

[SB86] M. Stefik and D. G. Bobrow : “Object-Oriented Programming: Themes and Vari-
ations,” The AI Magazine, 6(4), 1986.

[SLT91] M.H. Scoll, C. Laasch, and M. Tresch : “Updatable Views in Object-Oriented
Databases,” Proc. on the 2nd Int’l Conf. on DOOD, Munich, Germany, pp.189-
207, Dec. 1991.

[SS89] J. J. Shilling and P. F. Sweeney : “Three Steps to views: Extending the Object-
Oriented Paradigm,” Proc. OOPSLA ’89, ACM SIGPLAN Notices, 24(10), pp.353-
361, Oct. 1989.

gooboobbbooooooao

Bibliography 78

[SZ90] E. Shekita, and M. Zwilling : “Cricket: A Mapped, Persistent Object Store,” Proc.
of the 4th Int’l Workshop on Persistent Object Systems, pp.89-102, 1990.

[TAM94] K. Teramoto, M. Aritsugi, and A. Makinouchi : “Design, Implementation, and
Evaluation of the Persistent Programming Language INADA,” Tech. Rep. CSCE-
94C-02, Dept. of Comp. Sci. and Comm. Eng., Kyushu University, Mar. 1994.

[TYI88] K. Tanaka, M. Yoshikawa, and K. Ishihara : “Schema Virtualization in Object-
Oriented Databases,” Proc. the th Int’l Conf. on Data Engineering, pp.22-29, Feb.
1988.

[WD92] S. White and D. DeWitt : “A Performance Study of Alternative Object Faulting
and Pointer Swizzling Strategies,” Proc. 18th VLDB Conference, Canada, pp.419-
431, 1992.

[Wil90] P.R. Wilson : “Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge
Address Space on Standard Hardware,” Tech. Rep. UIC-EECS-90-6, Dec. 1990.

gooboobbbooooooao

